Gevorgyan, Ashot team published research on ChemSusChem in 2020 | 250285-32-6

Formula: C27H37ClN2, 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, also known as 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, is a useful research compound. Its molecular formula is C27H37ClN2 and its molecular weight is 425 g/mol. The purity is usually 95%.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride has been used to generate N-heterocyclic carbene catalysts for use in carbonylative cross-coupling of pyridyl halides with aryl boronic acids.

1,3-Bis(2,6-diisopropylphenyl)imidazolium Chloride is an imidazolium salt that is active against all stages of Trypanosoma cruzi and may represent a promising candidate for treatment of Chagas disease.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is an organic compound that is used as a solvent. It was originally synthesized by reacting triethyl orthoformate with 2,6-diisopropylaniline. This reaction formed the corresponding imidazolium salt. The synthesis of this compound was later improved by using ring-opening polymerization of glycolide and furfural. 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is mainly used to extract estradiol from urine samples in clinical laboratories., 250285-32-6.

Imidazole derivatives generally have good solubility in protic solvents. Simple imidazole derivatives, such as 1H-imidazole, 2-methyl-1H-imidazole, and 1,2-dimethylimidazole, have very high solubility in water. 250285-32-6, formula is C27H37ClN2, Name is 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride. Their solubility in alcohol is lower than that in water and decreases with increasing molecular weight of the alcohols . Formula: C27H37ClN2.

Gevorgyan, Ashot;Hopmann, Kathrin H.;Bayer, Annette research published 《 Exploration of New Biomass-Derived Solvents: Application to Carboxylation Reactions》, the research content is summarized as follows. A range of hitherto unexplored biomass-derived chems. have been evaluated as new sustainable solvents for a large variety of CO2-based carboxylation reactions. Known biomass-derived solvents (biosolvents) are also included in the study and the results are compared with commonly used solvents for the reactions. Biosolvents can be efficiently applied in a variety of carboxylation reactions, such as Cu-catalyzed carboxylation of organoboranes and organoboronates RBpin (R = Ph, thiophen-2-yl, hex-1-en-1-yl, etc.), metal-catalyzed hydrocarboxylation, borocarboxylation, and other related reactions. For many of these reactions, the use of biosolvents provides comparable or better yields than the commonly used solvents. The best biosolvents identified are the so far unexplored candidates isosorbide di-Me ether, acetaldehyde di-Et acetal, rose oxide, and eucalyptol, alongside the known biosolvent 2-methyltetrahydrofuran. This strategy was used for the synthesis of com. drugs Fenoprofen and Flurbiprofen.

Formula: C27H37ClN2, 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, also known as 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, is a useful research compound. Its molecular formula is C27H37ClN2 and its molecular weight is 425 g/mol. The purity is usually 95%.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride has been used to generate N-heterocyclic carbene catalysts for use in carbonylative cross-coupling of pyridyl halides with aryl boronic acids.

1,3-Bis(2,6-diisopropylphenyl)imidazolium Chloride is an imidazolium salt that is active against all stages of Trypanosoma cruzi and may represent a promising candidate for treatment of Chagas disease.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is an organic compound that is used as a solvent. It was originally synthesized by reacting triethyl orthoformate with 2,6-diisopropylaniline. This reaction formed the corresponding imidazolium salt. The synthesis of this compound was later improved by using ring-opening polymerization of glycolide and furfural. 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is mainly used to extract estradiol from urine samples in clinical laboratories., 250285-32-6.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Gerz, Isabelle team published research on European Journal of Inorganic Chemistry in 2021 | 3034-50-2

Computed Properties of 3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Imidazole is a five-membered heterocyclic moiety that possesses three carbon, two nitrogen, four hydrogen atoms, and two double bonds. 3034-50-2, formula is C4H4N2O, Name is Imidazole-4-carbaldehyde. It is also known as 1, 3-diazole. It contains two nitrogen atoms, in which one nitrogen bear a hydrogen atom, and the other is called pyrrole type nitrogen. Computed Properties of 3034-50-2.

Gerz, Isabelle;Jannuzzi, Sergio Augusto Venturinelli;Hylland, Knut T.;Negri, Chiara;Wragg, David S.;oeien-oedegaard, Sigurd;Tilset, Mats;Olsbye, Unni;DeBeer, Serena;Amedjkouh, Mohamed research published 《 Structural Elucidation, Aggregation, and Dynamic Behaviour of N,N,N,N-Copper(I) Schiff Base Complexes in Solid and in Solution: a Combined NMR, X-ray Spectroscopic and Crystallographic Investigation》, the research content is summarized as follows. Cu(I) complexes of bidentate or tetradentate Schiff base ligands bearing either 1-H-imidazole or pyridine moieties were synthesized. The complexes were studied by a combination of NMR and x-ray spectroscopic techniques. The differences between the imidazole- and pyridine-based ligands were examined by 1H, 13C and 15N NMR spectroscopy. The magnitude of the 15Nimine coordination shifts is strongly affected by the nature of the heterocycle in the complexes. These trends showed good correlation with the obtained Cu-Nimine bond lengths from single-crystal x-ray diffraction measurements. Variable-temperature NMR experiments, in combination with diffusion ordered spectroscopy (DOSY) revealed that one of the complexes underwent a temperature-dependent interconversion between a monomer, a dimer and a higher aggregate. The complexes bearing tetradentate imidazole ligands were further studied using Cu K-edge XAS and VtC XES, where DFT-assisted assignment of spectral features suggested that these complexes may form polynuclear oligomers in solid state. Addnl., the Cu(II) analog of one of the complexes was incorporated into a metal-organic framework (MOF) as a way to obtain discrete, mononuclear complexes in the solid state.

Computed Properties of 3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Geesi, Mohammed H. team published research on Journal of Molecular Structure in 2022 | 60-56-0

60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., COA of Formula: C4H6N2S

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 60-56-0, formula is C4H6N2S, Name is 1-Methyl-1H-imidazole-2(3H)-thione. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. COA of Formula: C4H6N2S.

Geesi, Mohammed H.;Riadi, Yassine;Kaiba, Abdellah;Ibnouf, Elmutasim O.;Anouar, El Hassane;Dehbi, Oussama;Lazar, Said;Guionneau, Philippe research published 《 Synthesis, antimicrobial evaluation, crystal structure, Hirschfeld surface analysis and docking studies of 4-[2-(1-methyl-1H-imidazol-2-ylsulfanyl)acetylamino]benzenesulfonic acid》, the research content is summarized as follows. The synthesis of a new 4-[2-(1-methyl-1H-imidazol-2-ylsulfanyl)-acetylamino]-benzenesulfonic acid from available reagents using an efficient strategy was reported, and its antimicrobial ability against bacterial strains was investigated. This new compound was characterized using a single crystal technique, which showed that the compound crystallized with a monoclinic system in a P21/c space group. Its unit-cell parameters were a = 17.0692 (2) Å, b = 5.0326 (3) Å, c = 17.2979 (4) Å, β = 106.596° (2) and Z = 4. Crystal packing was stabilized by hydrogen bonds, pi- stacking, C-H….pi and van der Waals interactions. The intermol. interaction anal. of the crystal structure was affected by Hirschfeld surface anal., and associated two-dimensional fingerprint plots were utilized. In addition, docking investigations of the biol. activity of the synthesized compound was also performed.

60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., COA of Formula: C4H6N2S

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Ge, Ting team published research on Biomaterials Science in 2022 | 10111-08-7

Product Details of C4H4N2O, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., 10111-08-7.

Imidazole based anticancer drug find applications in cancer chemotherapy. 10111-08-7, formula is C4H4N2O, Name is 1H-Imidazole-2-carbaldehyde. It is used as buffer component for purification of the histidine tagged recombinant proteins in immobilized metal-affinity chromatography (IMAC). Product Details of C4H4N2O.

Ge, Ting;Zhang, Weiwei;Ge, Fei;Zhu, Longbao;Song, Ping;Li, Wanzheng;Gui, Lin;Dong, Wan;Tao, Yugui;Yang, Kai research published 《 A bone-targeting drug delivery vehicle of a metal-organic framework conjugate with zoledronate combined with photothermal therapy for tumor inhibition in cancer bone metastasis》, the research content is summarized as follows. Chemotherapy is a conventional treatment method for metastatic bone cancer, but it has limitations, such as lower drug-targeting of bone tissues and serious side effects. Bone metastasis almost always occurs in advanced cancer, and most patients in this period have strong drug resistance, which further worsens the curative effect. To address the above-mentioned difficulties, a drug delivery platform is proposed in this paper that accomplishes the bone-targeting of drugs to efficiently inhibit tumors. First, the anti-cancer drugs 5-fluorouracil (5-Fu) and indocyanine green (ICG) were loaded into a zeolitic imidazolate framework (ZIF-90) to form 5-Fu/ICG@ZIF-90. Polyethylene glycol with zoledronic acid (ZOL) was encapsulated using 5-Fu/ICG@ZIF-90 to synthesize 5-Fu/ICG@ZIF-90-PEG-ZOL nanoparticles, which showed dimensional stability, good thermal stability, and bone-targeting ability. Second, the in vitro anti-cancer activity of the designed platform was investigated using cytotoxicity, apoptosis, live-dead staining, cell cycle, and cell ultrathin section anal. The results indicated that the nanoparticles inhibited MCF-7 cell activity when chemotherapy was combined with PTT. Finally, H&E staining and TUNEL detection were performed in mouse organs and tumors. The nanoparticles combined with photothermal therapy (PTT) and triggered by near-IR irradiation induce apoptosis of tumor cells in vivo, displaying a better efficacy of combined chemotherapy and photothermal therapy. Experiments conducted on the 5-Fu/ICG@ZIF-90-PEG-ZOL nanoparticles demonstrated their promising performance for cancer bone metastasis inhibition.

Product Details of C4H4N2O, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., 10111-08-7.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Gavara, Laurent team published research on European Journal of Medicinal Chemistry in 2020 | 3034-50-2

Application In Synthesis of 3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Imidazole derivatives generally have good solubility in protic solvents. Simple imidazole derivatives, such as 1H-imidazole, 2-methyl-1H-imidazole, and 1,2-dimethylimidazole, have very high solubility in water. 3034-50-2, formula is C4H4N2O, Name is Imidazole-4-carbaldehyde. Their solubility in alcohol is lower than that in water and decreases with increasing molecular weight of the alcohols . Application In Synthesis of 3034-50-2.

Gavara, Laurent;Sevaille, Laurent;De Luca, Filomena;Mercuri, Paola;Bebrone, Carine;Feller, Georges;Legru, Alice;Cerboni, Giulia;Tanfoni, Silvia;Baud, Damien;Cutolo, Giuliano;Bestgen, Benoit;Chelini, Giulia;Verdirosa, Federica;Sannio, Filomena;Pozzi, Cecilia;Benvenuti, Manuela;Kwapien, Karolina;Fischer, Marina;Becker, Katja;Frere, Jean-Marie;Mangani, Stefano;Gresh, Nohad;Berthomieu, Dorothee;Galleni, Moreno;Docquier, Jean-Denis;Hernandez, Jean-Francois research published 《 4-Amino-1,2,4-triazole-3-thione-derived Schiff bases as metallo-β-lactamase inhibitors》, the research content is summarized as follows. Resistance to β-lactam antibiotics in Gram-negatives producing metallo-β-lactamases (MBLs) represents a major medical threat and there is an extremely urgent need to develop clin. useful inhibitors. We previously reported the original binding mode of 5-substituted-4-amino/H-1,2,4-triazole-3-thione compounds in the catalytic site of an MBL. Moreover, we showed that, although moderately potent, they represented a promising basis for the development of broad-spectrum MBL inhibitors. Here, we synthesized and characterized a large number of 4-amino-1,2,4-triazole-3-thione-derived Schiff bases. Compared to the previous series, the presence of an aryl moiety at position 4 afforded an average 10-fold increase in potency. Among 90 synthetic compounds, more than half inhibited at least one of the six tested MBLs (L1, VIM-4, VIM-2, NDM-1, IMP-1, CphA) with Ki values in the μM to sub-μM range. Several were broad-spectrum inhibitors, also inhibiting the most clin. relevant VIM-2 and NDM-1. Active compounds generally contained halogenated, bicyclic aryl or phenolic moieties at position 5, and one substituent among o-benzoic, 2,4-dihydroxyphenyl, p-benzyloxyphenyl or 3-(m-benzoyl)-Ph at position 4. The crystallog. structure of VIM-2 in complex with an inhibitor showed the expected binding between the triazole-thione moiety and the dinuclear center and also revealed a network of interactions involving Phe61, Tyr67, Trp87 and the conserved Asn233. Microbiol. anal. suggested that the potentiation activity of the compounds was limited by poor outer membrane penetration or efflux. This was supported by the ability of one compound to restore the susceptibility of an NDM-1-producing E. coli clin. strain toward several β-lactams in the presence only of a sub-inhibitory concentration of colistin, a permeabilizing agent. Finally, some compounds were tested against the structurally similar di-zinc human glyoxalase II and found weaker inhibitors of the latter enzyme, thus showing a promising selectivity towards MBLs.

Application In Synthesis of 3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Garrison, Aaron T. team published research on Journal of Medicinal Chemistry in 2022 | 60-56-0

60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., Product Details of C4H6N2S

Imidazole Biochem/physiol Actions: Imidazole derivatives have antibacterial, antifungal and anticancer functionality. It interacts with DNA and also binds to protein and stops cell division. 60-56-0, formula is C4H6N2S, Name is 1-Methyl-1H-imidazole-2(3H)-thione. It also acts as a microtubule destabilizing agents and inhibits topoisomerase and Cytochrome P450 Family 26 Subfamily A Member 1 (CYP26A1) enzymes. Product Details of C4H6N2S.

Garrison, Aaron T.;Orsi, Douglas L.;Capstick, Rory A.;Whomble, David;Li, Jinming;Carter, Trever R.;Felts, Andrew S.;Vinson, Paige N.;Rodriguez, Alice L.;Han, Allie;Hajari, Krishma;Cho, Hyekyung P.;Teal, Laura B.;Ragland, Madeline G.;Ghamari-Langroudi, Masoud;Bubser, Michael;Chang, Sichen;Schnetz-Boutaud, Nathalie C.;Boutaud, Olivier;Blobaum, Anna L.;Foster, Daniel J.;Niswender, Colleen M.;Conn, P. Jeffrey;Lindsley, Craig W.;Jones, Carrie K.;Han, Changho research published 《 Development of VU6019650: A Potent, Highly Selective, and Systemically Active Orthosteric Antagonist of the M5 Muscarinic Acetylcholine Receptor for the Treatment of Opioid Use Disorder》, the research content is summarized as follows. The muscarinic acetylcholine receptor (mAChR) subtype 5 (M5) represents a novel potential target for the treatment of multiple addictive disorders, including opioid use disorder. Through chem. optimization of several functional high-throughput screening hits, VU6019650 (27b)(I) was identified as a novel M5 orthosteric antagonist with high potency (human M5 IC50 = 36 nM), M5 subtype selectivity (>100-fold selectivity against human M1-4) and favorable physicochem. properties for systemic dosing in preclin. addiction models. In acute brain slice electrophysiol. studies, 27b blocked the nonselective muscarinic agonist oxotremorine-M-induced increases in neuronal firing rates of midbrain dopamine neurons in the ventral tegmental area, a part of the mesolimbic dopaminergic reward circuitry. Moreover, 27b also inhibited oxycodone self-administration in male Sprague-Dawley rats within a dose range that did not impair general motor output.

60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., Product Details of C4H6N2S

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Garcia-Dominguez, Patricia team published research on Organometallics in 2021 | 250285-32-6

Category: imidazoles-derivatives, 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, also known as 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, is a useful research compound. Its molecular formula is C27H37ClN2 and its molecular weight is 425 g/mol. The purity is usually 95%.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride has been used to generate N-heterocyclic carbene catalysts for use in carbonylative cross-coupling of pyridyl halides with aryl boronic acids.

1,3-Bis(2,6-diisopropylphenyl)imidazolium Chloride is an imidazolium salt that is active against all stages of Trypanosoma cruzi and may represent a promising candidate for treatment of Chagas disease.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is an organic compound that is used as a solvent. It was originally synthesized by reacting triethyl orthoformate with 2,6-diisopropylaniline. This reaction formed the corresponding imidazolium salt. The synthesis of this compound was later improved by using ring-opening polymerization of glycolide and furfural. 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is mainly used to extract estradiol from urine samples in clinical laboratories., 250285-32-6.

Imidazole derivatives generally have good solubility in protic solvents. Simple imidazole derivatives, such as 1H-imidazole, 2-methyl-1H-imidazole, and 1,2-dimethylimidazole, have very high solubility in water. 250285-32-6, formula is C27H37ClN2, Name is 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride. Their solubility in alcohol is lower than that in water and decreases with increasing molecular weight of the alcohols . Category: imidazoles-derivatives.

Garcia-Dominguez, Patricia research published 《 Synthesis of L-Au(I)-CF2H Complexes and Their Application as Transmetalation Shuttles to the Difluoromethylation of Aryl Iodides》, the research content is summarized as follows. We describe herein two alternative protocols to efficiently prepare difluoromethylgold(I) complexes bearing ancillary ligands with different electronic and steric properties. LAu-OX (X = H and t-Bu) species, formed in the presence of base, have been identified as intermediate complexes involved in these transformations. The application of these compounds as “CF2H transmetalation shuttles” from gold to palladium has been demonstrated in a Pd-catalyzed difluoromethylation reaction of aryl iodides, in which the Au-to-Pd transfer of “CF2H” is feasible under stoichiometric conditions. These findings will pave the way for catalytic manifolds in gold chem.

Category: imidazoles-derivatives, 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, also known as 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, is a useful research compound. Its molecular formula is C27H37ClN2 and its molecular weight is 425 g/mol. The purity is usually 95%.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride has been used to generate N-heterocyclic carbene catalysts for use in carbonylative cross-coupling of pyridyl halides with aryl boronic acids.

1,3-Bis(2,6-diisopropylphenyl)imidazolium Chloride is an imidazolium salt that is active against all stages of Trypanosoma cruzi and may represent a promising candidate for treatment of Chagas disease.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is an organic compound that is used as a solvent. It was originally synthesized by reacting triethyl orthoformate with 2,6-diisopropylaniline. This reaction formed the corresponding imidazolium salt. The synthesis of this compound was later improved by using ring-opening polymerization of glycolide and furfural. 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is mainly used to extract estradiol from urine samples in clinical laboratories., 250285-32-6.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Gao, Ke team published research on Analytica Chimica Acta in 2021 | 10111-08-7

Safety of 1H-Imidazole-2-carbaldehyde, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., 10111-08-7.

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 10111-08-7, formula is C4H4N2O, Name is 1H-Imidazole-2-carbaldehyde. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. Safety of 1H-Imidazole-2-carbaldehyde.

Gao, Ke;Zhang, Yidan;Liu, Yuanyang;Yang, Meigui;Zhu, Tong research published 《 Screening of imidazoles in atmospheric aerosol particles using a hybrid targeted and untargeted method based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry》, the research content is summarized as follows. The method for identification and quantification of imidazoles in atm. aerosol particles with an aerodynamic diameter up to 2.5μm (PM2.5) is scarce, and the existing method focus on only a few imidazoles. With the goal of measuring more imidazoles, especially some previously unidentified ones, we developed a screening workflow based on data-dependent acquisition (DDA) auto MS/MS with a preferred targeted list containing 421 imidazoles using ultra-performance liquid chromatog.-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). To enable our method to effectively and accurately detect as many imidazoles as possible, we optimized and validated the method based on specificity, limit of detection (LOD), limit of quantification (LOQ), linearity, accuracy, precision and matrix effects using 20 imidazole standards with different functional groups. The method exhibited excellent performance with LOD and LOQ of 0.5-2 ng/mL and 1.5-6 ng/mL, resp., and spiked recoveries ranging from 64.7 to 98.7% with standard deviations less than 16.0%, and with relatively shorter anal. time. The established method was then used to screen imidazoles in 37 ambient PM2.5 samples. Ten targeted imidazoles were identified and quantified using imidazole standards, while five suspected imidazoles were identified without standards, and three imidazoles have not been reported before. Concentrations of the 10 targeted imidazoles ranged from 0.13 to 0.42 ng/m3. The established method enabled us to identify a wide range of imidazoles in ambient aerosol particles with and without using standards

Safety of 1H-Imidazole-2-carbaldehyde, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., 10111-08-7.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Ganesan, Arvind team published research on Industrial & Engineering Chemistry Research in 2021 | 10111-08-7

10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., HPLC of Formula: 10111-08-7

Imidazole based anticancer drug find applications in cancer chemotherapy. 10111-08-7, formula is C4H4N2O, Name is 1H-Imidazole-2-carbaldehyde. It is used as buffer component for purification of the histidine tagged recombinant proteins in immobilized metal-affinity chromatography (IMAC). HPLC of Formula: 10111-08-7.

Ganesan, Arvind;Purdy, Stephen C.;Yu, Zhenzi;Bhattacharyya, Souryadeep;Page, Katharine;Sholl, David S.;Nair, Sankar research published 《 Controlled Demolition and Reconstruction of Imidazolate and Carboxylate Metal-Organic Frameworks by Acid Gas Exposure and Linker Treatment》, the research content is summarized as follows. The metal-linker coordination bond in metal-organic frameworks (MOFs) can be unstable in humid and acid gas environments, leading to loss of crystallinity and porosity. This degradation is not necessarily irreversible; solvent-assisted crystal redemption (“SACRed”) has been shown to recover the phys. and chem. properties of ZIF-8 exposed to humid SO2. This approach can also be useful in creating mixed-linker materials that might be challenging to produce via de novo synthesis. Here, the authors expand more generally the concept of controlled degradation of a MOF with acid gas, followed by treatment with a fresh linker solution, to the use of different template MOFs (ZIFs, UiO-66, and UiO-67) and acid gases (SO2 and NO2 in dry and humid conditions). Significant losses in porosity and crystallinity along with structural changes (acid gas-linker complexes and linker functionalizations) are observed in the acid gas-exposed MOF templates, and SACRed is shown to reconstruct these partially demolished MOFs with a high degree of structural recovery. Detailed structural and spectroscopic characterizations of the controlled degradation and subsequent recovery are presented and analyzed. These findings indicate the generality of controlled degradation and reconstruction as a means for linker replacement in a wider variety of MOFs and also create the potential for linker substitutions (with non-native linkers) to obtain new hybrid MOFs.

10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., HPLC of Formula: 10111-08-7

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Galvan, Vicente team published research on ACS Applied Energy Materials in 2021 | 1739-84-0

Application of C5H8N2, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Imidazole is a heterocyclic compound with a five-membered planar ring. It is amphoteric and highly polar. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. The pharmacophore of imidazole exists in bioactive compounds including amino acids, plant growth regulators and therapeutic agents. Application of C5H8N2.

Galvan, Vicente;Shrimant, Bharat;Bae, Chulsung;Prakash, G. K. Surya research published 《 Ionomer Significance in Alkaline Direct Methanol Fuel Cell to Achieve High Power with a Quarternized Poly(terphenylene) Membrane》, the research content is summarized as follows. Direct alk. fuel cells have recently shown a rapid surge in performance due to improvements to the anion exchange membrane (AEM) and electrocatalysts for oxygen reduction reaction (ORR). Recently, much focus has been in the area of improving the anion exchange ionomer (AEI), catalyst and AEM interface, mostly centered on the H2/O2 fuel cell. The use of liquids in fuel cells can offer some advantages compared to the H2/O2 fuel cell; thus, it is important to study the interaction between the AEI, catalyst and AEM in direct oxidation liquid fuel cells. This work reports the activity of the methanol oxidation reaction (MOR) in half-cell experiments with varying AEIs and the use of a poly(terphenylene) (TPN) membrane in an alk. direct methanol fuel cell (ADMFC). The results show that changing the cation structures of AEIs has a significant role in MOR on the PtRu/C catalyst. Moreover, with the use of a TPN membrane and the prepared anode containing AEIs, high power densities are achieved with <1 mgPtRu/cm2 in the catalyst layer.

Application of C5H8N2, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem