Lehotay, Steven J. team published research in Analytical and Bioanalytical Chemistry in 2022 | 60-56-0

60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., Application of C4H6N2S

Imidazole Biochem/physiol Actions: Imidazole derivatives have antibacterial, antifungal and anticancer functionality. It interacts with DNA and also binds to protein and stops cell division. 60-56-0, formula is C4H6N2S, Name is 1-Methyl-1H-imidazole-2(3H)-thione. It also acts as a microtubule destabilizing agents and inhibits topoisomerase and Cytochrome P450 Family 26 Subfamily A Member 1 (CYP26A1) enzymes. Application of C4H6N2S.

Lehotay, Steven J. research published 《 Comparison of analyte identification criteria and other aspects in triple quadrupole tandem mass spectrometry: Case study using UHPLC-MS/MS for regulatory analysis of veterinary drug residues in liquid and powdered eggs》, the research content is summarized as follows. Ultrahigh-performance liquid chromatog. (UHPLC) coupled with triple quadrupole tandem mass spectrometry (MS/MS) is one of the most powerful tools for the multiclass, multiresidue anal. of veterinary drugs, pesticides, mycotoxins, and other chem. contaminants in foods and other sample types. Until approx. 2010, com. MS/MS instruments using multiple reaction monitoring (MRM) were generally limited to min. dwell (and inter-dwell) times of 10 ms per ion transition. To achieve the needed accuracy and detection limits for hundreds of targeted analytes, older UHPLC-MS/MS methods typically acquired only two ion transitions per analyte (yielding only one ion ratio for qual. identification purposes), which is still the norm despite technol. advancements. Newer instruments permit as little as 1 ms (inter-)dwell times to afford monitoring of more MRMs/analyte with minimal sacrifices in accuracy and sensitivity. In this study, quantification and identification were assessed in the validation of 169 veterinary drugs in liquid and powd. eggs. Quant., an “extract-and-inject” sample preparation method yielded acceptable 70-120% recoveries and < 25% RSD for 139-141 (82-83%) of the 169 diverse drug analytes spiked into powd. and liquid eggs, resp., at three levels of regulatory interest. Qual., rates of false positives and negatives were compared when applying three different regulatory identification criteria in which two or three MRMs/drug were used in each case. Independent of the identification criteria, rates of false positives remained <10% for 95-99% of the drugs whether 2 or 3 ions were monitored, but the percent of drugs with >10% false negatives decreased from 25-45 to 10-12% when using 2 vs. 3 MRMs/analyte, resp. Use of a concentration threshold at 10% of the regulatory level as an identification criterion was also very useful to reduce rates of false positives independent of ion ratios. Based on these results, monitoring >2 ion transitions per analyte is advised when using MS/MS for anal., independent of SANTE/12682/2019, FDA/USDA, or 2002/657/EC identification criteria. (Quant)identification results using all three criteria were similar, but the SANTE criteria were advantageous in their greater simplicity and practical ease of use.

60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., Application of C4H6N2S

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem