Mei, Douchao team published research in Chemical Engineering Journal (Amsterdam, Netherlands) in 2021 | 10111-08-7

10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., Application In Synthesis of 10111-08-7

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 10111-08-7, formula is C4H4N2O, Name is 1H-Imidazole-2-carbaldehyde. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. Application In Synthesis of 10111-08-7.

Mei, Douchao;Li, Huan;Liu, Lijia;Jiang, Lichao;Zhang, Chunhong;Wu, Xinrui;Dong, Hongxing;Ma, Fuqiu research published 《 Efficient uranium adsorbent with antimicrobial function: Oxime functionalized ZIF-90》, the research content is summarized as follows. The anti-fouling performance of an adsorbent is important for its application in wastewater, because biol. fouling severely reduces its adsorption capacity. A zeolitic imidazolate framework was synthesized and oxime-functionalized to produce an efficient uranium adsorbent with antimicrobial properties (ZIF-90-OM). Its adsorption performance for U (VI) was studied under different environmental parameters, including pH, initial uranium concentration, competitive ions, ionic strength, temperature, and contact time. Due to its porous structure and the strong chelation of oxime groups with U (VI), ZIF-90-OM showed a very high maximum adsorption capacity for U (VI) of 610 mg/g at pH = 5.0. The adsorption of uranium on ZIF-90-OM correlated well with the Langmuir model and the pseudo-second-order kinetic model. ZIF-90-OM showed high uranium selectivity even in the presence of competing metal ions. Besides, the adsorbent also exhibits good recyclability, the adsorption capacity was maintained after five adsorption/desorption cycles. Furthermore, ZIF-90-OM showed excellent antimicrobial properties against both Gram-neg. Escherichia coli (E. coli) and Gram-pos. Staphylococcus aureus (S. aureus). Our work shows that ZIF-90-OM is an efficient adsorbent for the removal of U (VI) from wastewater because of the presence of oxime groups and its anti-fouling properties. Moreover, due to its antimicrobial properties, ZIF-90-OM can be used to purify water.

10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., Application In Synthesis of 10111-08-7

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem