Vedovello, Priscila team published research in SN Applied Sciences in 2021 | 1739-84-0

Recommanded Product: 1,2-Dimethyl-1H-imidazole, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. Recommanded Product: 1,2-Dimethyl-1H-imidazole.

Vedovello, Priscila;de Oliveira Gomes, Ana Catarina;da Rocha Oliveira, Lucas Mendonca;Cruz, Sandra Andrea;Paranhos, Caio Marcio research published 《 Short alkyl chain length ionic liquid as organic modifier in polypropylene/clay nanocomposite: a thermal comparative study》, the research content is summarized as follows. The most common polymeric nanocomposites are constituted of organically-modified clays. Generally, these organic modifiers are based on quaternary ammonium salts. These systems have as disadvantage the low thermal resistance of its modifiers under processing. Ionic liquids (IL) with different mol. structures can be used as organic modifier in lamellar clays-based polymeric nanocomposites, being promising not only to increase interactions between the nanoclay and the matrix, but also to increase the thermal resistance. In this study, polypropylene-based/montmorillonite nanocomposites were compared from two different organic modifiers. The use of short alkyl chain length imidazolium-based IL as montmorillonite modifier was investigated in terms of the thermal stability when compared to the usual quaternary ammonium salt surfactant. Integral procedure decomposition temperature was employed to determine the effect of these two different organoclay modifiers in PP-nanocomposites. The activation energy for these samples was calculated using Flynn-Wall-Ozawa (FWO) method. It was also used the multiple linear regression anal. to calculate the activation energy in order to evaluate the accuracy of this method when applied to nanocomposites.

Recommanded Product: 1,2-Dimethyl-1H-imidazole, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

van Essen, Machiel team published research in Journal of Membrane Science in 2021 | 10111-08-7

Reference of 10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., 10111-08-7.

Imidazole derivatives generally have good solubility in protic solvents. Simple imidazole derivatives, such as 1H-imidazole, 2-methyl-1H-imidazole, and 1,2-dimethylimidazole, have very high solubility in water. 10111-08-7, formula is C4H4N2O, Name is 1H-Imidazole-2-carbaldehyde. Their solubility in alcohol is lower than that in water and decreases with increasing molecular weight of the alcohols . Reference of 10111-08-7.

van Essen, Machiel;Thur, Raymond;van den Akker, Luuk;Houben, Menno;Vankelecom, Ivo F. J.;Nijmeijer, Kitty;Borneman, Zandrie research published 《 Tailoring the separation performance of ZIF-based mixed matrix membranes by MOF-matrix interfacial compatibilization》, the research content is summarized as follows. Controlling the metal-organic framework (MOF)-matrix interface is a useful strategy to improve the gas separation performance of mixed matrix membranes (MMMs). Although polymer blending has been investigated to enhance MMM performances, its true strength, i.e., aligning polymer and additive chemistries to improve interfacial compatibility and ultimately the separation performance, is only poorly investigated. In this work we demonstrate how controlling interfacial chemistries by polymer blending is an effective tool to tune the membrane performance. Three isoreticular zeolitic imidazolate frameworks (ZIFs) and two matrix polymers (Matrimid and polybenzimidazole oPBI (PBI)) were used to prepare the MMMs. The ZIF linker functionality strongly determined the extent of the effect of PBI addition in the MMMs. For both the hydrophobic ZIF-7 and ZIF-8-based MMMs, PBI compatibilized the MOF-matrix interface and increased the CO2/N2 separation factor while slightly decreasing the permeability. Contrarily, the separation performance of the hydrophilic ZIF-90 MMM was not affected by PBI incorporation. Addnl., the MMM permeability followed the trend of the ZIF pore geometries and linker flexibilities. These results proved that MOF-matrix interfacial compatibility can effectively be controlled by polymer blending and that the extent of control is determined by a subtle balance between the MOF linker functionality and matrix chem.

Reference of 10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., 10111-08-7.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Valverde, David team published research in ACS Sustainable Chemistry & Engineering in 2021 | 1739-84-0

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., HPLC of Formula: 1739-84-0

Imidazole derivatives generally have good solubility in protic solvents. Simple imidazole derivatives, such as 1H-imidazole, 2-methyl-1H-imidazole, and 1,2-dimethylimidazole, have very high solubility in water. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. Their solubility in alcohol is lower than that in water and decreases with increasing molecular weight of the alcohols . HPLC of Formula: 1739-84-0.

Valverde, David;Porcar, Raul;Lozano, Pedro;Garcia-Verdugo, Eduardo;Luis, Santiago V. research published 《 Multifunctional Polymers Based on Ionic Liquid and Rose Bengal Fragments for the Conversion of CO2 to Carbonates》, the research content is summarized as follows. Supported ionic liquid-like phases (SILLPs) containing Rose Bengal (RB) units are used to develop organocatalytic systems for the cycloaddition of CO2 to epoxides. The activity of the supported RB fragments can be fine-tuned by controlling the nature of the SILLPs (i.e., substitution at the imidazolium ring, crosslinking degree of the polymeric matrix, loading, etc.). Such a catalytic system prepared from cheap, simple, and com. available components provides high activity and stability, with no decay in activity for at least 10 days of continuous use under flow conditions. SILLPs containing imidazolium and Rose Bengal units are used to enhancing organocatalytic systems and provide high activity and stability under batch and flow conditions.

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., HPLC of Formula: 1739-84-0

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Valipour, Mehdi team published research in European Journal of Pharmaceutical Sciences in 2021 | 1739-84-0

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Synthetic Route of 1739-84-0

Imidazole derivatives generally have good solubility in protic solvents. Simple imidazole derivatives, such as 1H-imidazole, 2-methyl-1H-imidazole, and 1,2-dimethylimidazole, have very high solubility in water. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. Their solubility in alcohol is lower than that in water and decreases with increasing molecular weight of the alcohols . Synthetic Route of 1739-84-0.

Valipour, Mehdi;Naderi, Nima;Heidarli, Elmira;Shaki, Fatemeh;Motafeghi, Farzaneh;Talebpour Amiri, Fereshteh;Emami, Saeed;Irannejad, Hamid research published 《 Design, synthesis and biological evaluation of naphthalene-derived (arylalkyl)azoles containing heterocyclic linkers as new anticonvulsants: A comprehensive in silico, in vitro, and in vivo study》, the research content is summarized as follows. In continuation of our research to find strong and safe anticonvulsant agents, a number of (arylalkyl)azoles (AAAs) containing naphthylthiazole and naphthyloxazole scaffolds were designed and synthesized. The in vivo anticonvulsant evaluations in BALB/c mice revealed that some of them had significant anticonvulsant activity in both maximal electroshock (MES) and pentylenetetrazole (PTZ) models of epilepsy. The best profile of activity was observed with compounds containing imidazole and triazole rings (C1, C6, G1, and G6). In particular, imidazolylmethyl-thiazole C1 with median ED (ED50)= 7.9 mg/kg in the MES test, ED50= 27.9 mg/kg in PTZ test, and without any sign of neurotoxicity (in the rotarod test, 100 mg/kg) was the most promising compound The patch-clamp recording was performed to study the mechanism of action of the representative compound C1 on hippocampal dentate gyrus (DG) cells. The results did not confirm any modulatory effect of C1 on the voltage-gated ion channels (VGICs) or GABAA agonism, but suggested a significant reduction of excitatory postsynaptic currents (EPSCs) frequency on hippocampal DG neurons. Sub-acute toxicity studies revealed that administration of the most active compounds (C1, C6, G1, and G6) at 100 mg/kg bw/day for two weeks did not result in any mortality or significant toxicity as evaluated by assessment of biochem. markers such as lipid peroxidation, intracellular glutathione, total antioxidant capacity, histopathol. changes, and mitochondrial functions. Other pharmacol. aspects of compounds including mechanistic and ADME properties were investigated computationally and/or exptl. Mol. docking on the NMDA and AMPA targets suggested that the introduction of the heterocyclic ring in the middle of AAAs significantly affects the affinity of the compounds The obtained results totally demonstrated that the prototype compound C1 can be considered as a new lead for the development of anticonvulsant agents.

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Synthetic Route of 1739-84-0

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Urena, Nieves team published research in Polymer in 2021 | 1739-84-0

Name: 1,2-Dimethyl-1H-imidazole, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Imidazole Biochem/physiol Actions: Imidazole derivatives have antibacterial, antifungal and anticancer functionality. It interacts with DNA and also binds to protein and stops cell division. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. It also acts as a microtubule destabilizing agents and inhibits topoisomerase and Cytochrome P450 Family 26 Subfamily A Member 1 (CYP26A1) enzymes. Name: 1,2-Dimethyl-1H-imidazole.

Urena, Nieves;Perez-Prior, Maria Teresa;Rio, Carmen del;Varez, Alejandro;Levenfeld, Belen research published 《 New amphiphilic semi-interpenetrating networks based on polysulfone for anion-exchange membrane fuel cells with improved alkaline and mechanical stabilities》, the research content is summarized as follows. As considerable advance has recently been made in enhancing the conductivity of anion-exchange membranes, durability has become the critical requirement in the development of fuel cells. Such properties often develop at the expense of the other. In this work, new amphiphilic semi-interpenetrating networks composed of free polysulfone and crosslinked polysulfone are synthesized for the first time. The same nature of both polymers makes them highly compatible. The free polymer provides the hydrophobic component, whereas the crosslinked polysulfone, functionalized with trimethylammonium, 1-methylimidazolium, or 1,2-dimethylimidazolium groups, is responsible for the ionic conductivity The compatibility between both components in the blend, improves the mech. properties, while unaffecting the transport properties. Thus, the obtained membranes exceed the mech. behavior of com. materials, even in conditions of extreme humidity and temperature The tensile strength of these synthesized membranes can reach to relatively high values, and when compared to the com. PSU, the difference in tensile strength can be noted to be as low as 10%. Moreover, the tensile strength and the ductility values of the crosslinked PSU are higher than those obtained with non-crosslinked PSU. Furthermore, the membranes presented in this work show a great alk. stability (e.g. semi-interpenetrating network containing 1,2-dimethylimidazolium maintains 87% of the ionic conductivity after 14 days of treatment). Thus, these membranes provide an improvement in the durability limiting factors, in comparison to functionalized polysulfones, fulfilling the requirements to be used as electrolytes in anion-exchange membrane fuel cells.

Name: 1,2-Dimethyl-1H-imidazole, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Uchikura, Tatsuhiro team published research in ACS Organic & Inorganic Au in 2021 | 60-56-0

Synthetic Route of 60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., 60-56-0.

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 60-56-0, formula is C4H6N2S, Name is 1-Methyl-1H-imidazole-2(3H)-thione. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. Synthetic Route of 60-56-0.

Uchikura, Tatsuhiro;Hara, Yurina;Tsubono, Kazushi;Akiyama, Takahiko research published 《 Visible-Light Driven C-S Bond Formation Based on Electron Donor-Acceptor Excitation and Hydrogen Atom Transfer Combined System》, the research content is summarized as follows. A visible-light driven synthesis of sulfides by an EDA-SET and HAT combined system without transition metals and strong oxidants was developed. This reaction proceeded through the excitation of an electron donor-acceptor complex between a thiolate and an aryl halide, followed by the hydrogen atom transfer from an alkanes and generated aryl radical.

Synthetic Route of 60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., 60-56-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Tzouras, Nikolaos V. team published research in Chemistry – A European Journal in 2021 | 250285-32-6

Recommanded Product: 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, also known as 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, is a useful research compound. Its molecular formula is C27H37ClN2 and its molecular weight is 425 g/mol. The purity is usually 95%.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride has been used to generate N-heterocyclic carbene catalysts for use in carbonylative cross-coupling of pyridyl halides with aryl boronic acids.

1,3-Bis(2,6-diisopropylphenyl)imidazolium Chloride is an imidazolium salt that is active against all stages of Trypanosoma cruzi and may represent a promising candidate for treatment of Chagas disease.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is an organic compound that is used as a solvent. It was originally synthesized by reacting triethyl orthoformate with 2,6-diisopropylaniline. This reaction formed the corresponding imidazolium salt. The synthesis of this compound was later improved by using ring-opening polymerization of glycolide and furfural. 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is mainly used to extract estradiol from urine samples in clinical laboratories., 250285-32-6.

Imidazole Biochem/physiol Actions: Imidazole derivatives have antibacterial, antifungal and anticancer functionality. It interacts with DNA and also binds to protein and stops cell division. 250285-32-6, formula is C27H37ClN2, Name is 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride. It also acts as a microtubule destabilizing agents and inhibits topoisomerase and Cytochrome P450 Family 26 Subfamily A Member 1 (CYP26A1) enzymes. Recommanded Product: 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride.

Tzouras, Nikolaos V.;Martynova, Ekaterina A.;Ma, Xinyuan;Scattolin, Thomas;Hupp, Benjamin;Busen, Hendrik;Saab, Marina;Zhang, Ziyun;Falivene, Laura;Pisano, Gianmarco;Van Hecke, Kristof;Cavallo, Luigi;Cazin, Catherine S. J.;Steffen, Andreas;Nolan, Steven P. research published 《 Simple Synthetic Routes to Carbene-M-Amido (M = Cu, Ag, Au) Complexes for Luminescence and Photocatalysis Applications》, the research content is summarized as follows. The development of novel and operationally simple synthetic routes to carbene-metal-amido (CMA) complexes [(NHC)M(Cbz)] (NHC = substituted 2-imidazolylidene; HCbz = 9H-carbazole; M = Cu, Ag, Au) of copper, silver and gold relevant for photonic applications are reported. A mild base and sustainable solvents allow all reactions to be conducted in air and at room temperature, leading to high yields of the targeted compounds even on multigram scales. The effect of various mild bases on the N-H metalation was studied in silico and exptl., while a mechanochem., solvent-free synthetic approach was also developed. Our photophys. studies on [M(NHC)(Cbz)] indicate that the occurrence of fluorescent or phosphorescent states is determined primarily by the metal, providing control over the excited state properties. Consequently, we demonstrate the potential of the new CMAs beyond luminescence applications by employing a selected CMA as a photocatalyst. The exemplified synthetic ease is expected to accelerate the applications of CMAs in photocatalysis and materials chem.

Recommanded Product: 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, also known as 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, is a useful research compound. Its molecular formula is C27H37ClN2 and its molecular weight is 425 g/mol. The purity is usually 95%.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride has been used to generate N-heterocyclic carbene catalysts for use in carbonylative cross-coupling of pyridyl halides with aryl boronic acids.

1,3-Bis(2,6-diisopropylphenyl)imidazolium Chloride is an imidazolium salt that is active against all stages of Trypanosoma cruzi and may represent a promising candidate for treatment of Chagas disease.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is an organic compound that is used as a solvent. It was originally synthesized by reacting triethyl orthoformate with 2,6-diisopropylaniline. This reaction formed the corresponding imidazolium salt. The synthesis of this compound was later improved by using ring-opening polymerization of glycolide and furfural. 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is mainly used to extract estradiol from urine samples in clinical laboratories., 250285-32-6.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Tzouras, Nikolaos V. team published research in Chemistry – A European Journal in 2020 | 250285-32-6

COA of Formula: C27H37ClN2, 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, also known as 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, is a useful research compound. Its molecular formula is C27H37ClN2 and its molecular weight is 425 g/mol. The purity is usually 95%.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride has been used to generate N-heterocyclic carbene catalysts for use in carbonylative cross-coupling of pyridyl halides with aryl boronic acids.

1,3-Bis(2,6-diisopropylphenyl)imidazolium Chloride is an imidazolium salt that is active against all stages of Trypanosoma cruzi and may represent a promising candidate for treatment of Chagas disease.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is an organic compound that is used as a solvent. It was originally synthesized by reacting triethyl orthoformate with 2,6-diisopropylaniline. This reaction formed the corresponding imidazolium salt. The synthesis of this compound was later improved by using ring-opening polymerization of glycolide and furfural. 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is mainly used to extract estradiol from urine samples in clinical laboratories., 250285-32-6.

Imidazole is a five-membered heterocyclic moiety that possesses three carbon, two nitrogen, four hydrogen atoms, and two double bonds. 250285-32-6, formula is C27H37ClN2, Name is 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride. It is also known as 1, 3-diazole. It contains two nitrogen atoms, in which one nitrogen bear a hydrogen atom, and the other is called pyrrole type nitrogen. COA of Formula: C27H37ClN2.

Tzouras, Nikolaos V.;Nahra, Fady;Falivene, Laura;Cavallo, Luigi;Saab, Marina;Van Hecke, Kristof;Collado, Alba;Collett, Christopher J.;Smith, Andrew D.;Cazin, Catherine S. J.;Nolan, Steven P. research published 《 A Mechanistically and Operationally Simple Route to Metal-N-Heterocyclic Carbene (NHC) Complexes》, the research content is summarized as follows. The authors were puzzled by the involvement of weak organic and inorganic bases in the synthesis of metal-N-heterocyclic carbene (NHC) complexes. Such bases are insufficiently strong to permit the presumed required deprotonation of the azolium salt (the carbene precursor) prior to metal binding. Exptl. and computational studies provide support for a base-assisted concerted process that does not require free NHC formation. The synthetic protocol was found applicable to a number of transition-metal- and main-group-centered NHC compounds and could become the synthetic route of choice to form M-NHC bonds.

COA of Formula: C27H37ClN2, 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, also known as 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, is a useful research compound. Its molecular formula is C27H37ClN2 and its molecular weight is 425 g/mol. The purity is usually 95%.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride has been used to generate N-heterocyclic carbene catalysts for use in carbonylative cross-coupling of pyridyl halides with aryl boronic acids.

1,3-Bis(2,6-diisopropylphenyl)imidazolium Chloride is an imidazolium salt that is active against all stages of Trypanosoma cruzi and may represent a promising candidate for treatment of Chagas disease.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is an organic compound that is used as a solvent. It was originally synthesized by reacting triethyl orthoformate with 2,6-diisopropylaniline. This reaction formed the corresponding imidazolium salt. The synthesis of this compound was later improved by using ring-opening polymerization of glycolide and furfural. 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is mainly used to extract estradiol from urine samples in clinical laboratories., 250285-32-6.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Turkoglu, Gulsen team published research in Organic & Biomolecular Chemistry in 2020 | 3034-50-2

Related Products of 3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 3034-50-2, formula is C4H4N2O, Name is Imidazole-4-carbaldehyde. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. Related Products of 3034-50-2.

Turkoglu, Gulsen;Kayadibi Koygun, Gozde;Yurt, Mediha Nur Zafer;Demirok, Naime;Erbas-Cakmak, Sundus research published 《 Self-reporting heavy atom-free photodynamic therapy agents》, the research content is summarized as follows. Two novel, self-reporting distyryl BODIPY-based photodynamic therapy agents functionalized with singlet oxygen responsive imidazole and tertiary amine moieties are developed. Heavy atom-free photosensitizers are demonstrated to have efficient photodynamic action in MCF7 cells. The fluorescence intensity of the photosensitizers is shown to be reduced as a result of 1O2 generation without any significant change in photodynamic activity.

Related Products of 3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Tsyrenova, Ayuna team published research in Journal of Physical Chemistry Letters in 2020 | 1739-84-0

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Related Products of 1739-84-0

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. Related Products of 1739-84-0.

Tsyrenova, Ayuna;Farooq, Muhammad Q.;Anthony, Stephen M.;Mollaeian, Keyvan;Li, Yifan;Liu, Fei;Miller, Kyle;Ren, Juan;Anderson, Jared L.;Jiang, Shan research published 《 Unique Orientation of the Solid-Solid Interface at the Janus Particle Boundary Induced by Ionic Liquids》, the research content is summarized as follows. This study reveals the unique role on Janus particles of the solid-solid interface at the boundary in determining particle interactions and assembly. In an aqueous ionic liquid (IL) solution, Janus spheres adopt intriguing orientations with their boundaries pinned on the glass substrate. It was further discovered that the orientation was affected by the particle amphiphilicity as well as the chem. structure and concentration of the IL. Further characterization suggests that the adsorption on the hydrophilic side is due to both an electrostatic interaction and hydrogen bonding, while adsorption on the hydrophobic side is due to hydrophobic attraction. Through the concerted interplay of all these interactions, the amphiphilic boundary may attract an excessive amount of IL cations, which guide the unique orientations of the Janus spheres. The results highlight the importance of the Janus boundary that has not been recognized previously. Adsorption at the solid-solid interfaces may inspire new applications in areas such as separation and catalysis.

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Related Products of 1739-84-0

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem