Ketsomboon, Nutthanicha team published research in Tetrahedron Letters in 2021 | 1739-84-0

Reference of 1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. Reference of 1739-84-0.

Ketsomboon, Nutthanicha;Saeeng, Rungnapha;Srisook, Klaokwan;Sirion, Uthaiwan research published 《 Convenient synthesis of long alkyl-chain triazolylglycosides using ionic liquid as dual promoter-solvent: Readily access to non-ionic triazolylglycoside surfactants for evaluation of cytotoxic activity》, the research content is summarized as follows. A convenient method for the one-pot synthesis of long alkyl-chain triazolylglycosides using ionic liquid as dual promoter and solvent is described via a sequential one-pot two-step glycosidation-CuAAc click reaction. The reaction was carried out using com. available substrates, including glycosyl bromides, sodium azide and various long alkyl-chain alkynes to achieve the corresponding products in moderate to high yields. Furthermore, this approach was successfully applied for the preparation of non-ionic mono-catenary triazolylglycoside surfactants in excellent yields through simple deacetylation. Subsequently, these surfactants were further evaluated for their cytotoxic activity.

Reference of 1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Kazancioglu, Mustafa Z. team published research in Chirality in 2022 | 3034-50-2

3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, Product Details of C4H4N2O

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 3034-50-2, formula is C4H4N2O, Name is Imidazole-4-carbaldehyde. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. Product Details of C4H4N2O.

Kazancioglu, Mustafa Z.;Quirion, Kevin;Wipf, Peter;Skoda, Erin M. research published 《 Enantioselective synthesis and selective functionalization of 4-aminotetrahydroquinolines as novel GLP-1 secretagogues》, the research content is summarized as follows. Polysubstituted tetrahydroquinolines were obtained in moderate to high yields (28% to 92%) and enantiomeric ratios (er 89:11 to 99:1) by a three-component Povarov reaction using a chiral phosphoric acid catalyst. Significantly, post-Povarov functional group interconversions allowed a rapid access to a library of 36 enantioenriched 4-aminotetrahydroquinoline derivatives featuring five points of diversity. Selected analogs were assayed for their ability to function as glucagon-like peptide-1 (GLP-1) secretagogues.

3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, Product Details of C4H4N2O

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Kawamura, Kiana E. team published research in Organometallics in 2022 | 250285-32-6

250285-32-6, 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, also known as 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, is a useful research compound. Its molecular formula is C27H37ClN2 and its molecular weight is 425 g/mol. The purity is usually 95%.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride has been used to generate N-heterocyclic carbene catalysts for use in carbonylative cross-coupling of pyridyl halides with aryl boronic acids.

1,3-Bis(2,6-diisopropylphenyl)imidazolium Chloride is an imidazolium salt that is active against all stages of Trypanosoma cruzi and may represent a promising candidate for treatment of Chagas disease.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is an organic compound that is used as a solvent. It was originally synthesized by reacting triethyl orthoformate with 2,6-diisopropylaniline. This reaction formed the corresponding imidazolium salt. The synthesis of this compound was later improved by using ring-opening polymerization of glycolide and furfural. 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is mainly used to extract estradiol from urine samples in clinical laboratories., Quality Control of 250285-32-6

Imidazole based anticancer drug find applications in cancer chemotherapy. 250285-32-6, formula is C27H37ClN2, Name is 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride. It is used as buffer component for purification of the histidine tagged recombinant proteins in immobilized metal-affinity chromatography (IMAC). Quality Control of 250285-32-6.

Kawamura, Kiana E.;Chang, Alison Sy-min;Martin, Daryl J.;Smith, Haley M.;Morris, Parker T.;Cook, Amanda K. research published 《 Modular Ni(0)/Silane Catalytic System for the Isomerization of Alkenes》, the research content is summarized as follows. Alkenes were used ubiquitously as starting materials and synthetic targets in all areas of chem. Controlling their geometry and position along a chain is vital to their reactivity and properties yet remains challenging. Alkene isomerization is an atom-economical process to synthesize targeted alkenes, and selectivity can be controlled using transition metal catalysts. The development of mild, selective isomerization reactivity has enabled efficient tandem catalytic systems for the remote functionalization of alkenes, a process in which a starting alkene is isomerized to a new position prior to the functionalization step. The key challenges in developing isomerization catalysts for remote functionalization applications are (i) a lack of modularity in the catalyst structure and (ii) the requirement of nonmodular and/or harsh additives during catalyst activation. The authors address both challenges with a modular (NHC)Ni(0)/silane catalytic system (NHC, N-heterocyclic carbene), demonstrating the use of triaryl silanes and readily accessible (NHC)Ni(0) complexes to form the proposed active (NHC) (silyl)Ni-H species in situ. Modification of the steric and electronic nature of the catalyst via modification of the ancillary ligand and silane partner, resp., is easily achieved, creating a uniquely versatile catalytic system that is effective for the formation of internal alkenes with high yield and selectivity for the E-alkene. The use of silanes as mild activators enables isomerization of substrates with a variety of functional groups, including acid-labile groups. The broad substrate scope, enabled by catalyst design, makes this catalytic system a strong candidate for use in tandem catalytic applications. Preliminary mechanistic studies support a Ni-H insertion/elimination pathway.

250285-32-6, 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, also known as 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, is a useful research compound. Its molecular formula is C27H37ClN2 and its molecular weight is 425 g/mol. The purity is usually 95%.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride has been used to generate N-heterocyclic carbene catalysts for use in carbonylative cross-coupling of pyridyl halides with aryl boronic acids.

1,3-Bis(2,6-diisopropylphenyl)imidazolium Chloride is an imidazolium salt that is active against all stages of Trypanosoma cruzi and may represent a promising candidate for treatment of Chagas disease.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is an organic compound that is used as a solvent. It was originally synthesized by reacting triethyl orthoformate with 2,6-diisopropylaniline. This reaction formed the corresponding imidazolium salt. The synthesis of this compound was later improved by using ring-opening polymerization of glycolide and furfural. 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is mainly used to extract estradiol from urine samples in clinical laboratories., Quality Control of 250285-32-6

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Karatas, Mert Olgun team published research in Dalton Transactions in 2021 | 1739-84-0

Synthetic Route of 1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Imidazole derivatives generally have good solubility in protic solvents. Simple imidazole derivatives, such as 1H-imidazole, 2-methyl-1H-imidazole, and 1,2-dimethylimidazole, have very high solubility in water. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. Their solubility in alcohol is lower than that in water and decreases with increasing molecular weight of the alcohols . Synthetic Route of 1739-84-0.

Karatas, Mert Olgun;Ozdemir, Namik;Sariman, Melda;Gunal, Selami;Ulukaya, Engin;Ozdemir, Ismail research published 《 Water-soluble silver(I) complexes with N-donor benzimidazole ligands containing an imidazolium core: stability and preliminary biological studies》, the research content is summarized as follows. Herein, the authors report the synthesis, characterization and preliminary biol. evaluation of two novel silver(I) complexes of type [AgL2](NO3)3 (3 and 4) with ionic N-donor benzimidazoles. The complexes have been synthesized by the reaction of 1.5 equiv of silver nitrate and N-donor benzimidazoles containing an imidazolium core at the 2-position (1 and 2) in ethanol. The X-ray anal. of 4 shows that it has two free imidazolium cores and the charge is balanced with three nitrate anions. A study by the combination of NMR, IR, LC-MS and elemental anal. techniques also suggests that the complexes have this structure both in the solid-state and solution The complexes are highly soluble and stable in water. Cytotoxicity evaluation against four cancerous human cells and one non-cancerous human cell revealed that the complexes have no significant anti-growth effect. However, the complexes showed a remarkable antimicrobial effect at normalized min. inhibitory concentrations (normalized MICs) in the range of 33-268μM against a panel of microorganisms consisting of Gram-neg. and Gram-pos. bacteria, and fungi.

Synthetic Route of 1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Kang, Yanli team published research in Sensors in 2021 | 1739-84-0

Recommanded Product: 1,2-Dimethyl-1H-imidazole, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Imidazole is a heterocyclic compound with a five-membered planar ring. It is amphoteric and highly polar. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. The pharmacophore of imidazole exists in bioactive compounds including amino acids, plant growth regulators and therapeutic agents. Recommanded Product: 1,2-Dimethyl-1H-imidazole.

Kang, Yanli;Zhang, Lu;Wang, Wenhao;Yu, Feng research published 《 Ethanol Sensing Properties and First Principles Study of Au Supported on Mesoporous ZnO Derived from Metal Organic Framework ZIF-8》, the research content is summarized as follows. It is of great significance to develop ethanol sensors with high sensitivity and low detection temperature Hence, we prepared Au-supported material on mesoporous ZnO composites derived from a metal-organic framework ZIF-8 for the detection of ethanol gas. The obtained Au/ZnO materials were characterized by X-ray diffraction (XRD), XPS, field emission SEM (SEM), field emission transmission electron microscopy (TEM) and nitrogen adsorption and desorption isotherms. The results showed that the Au/ZnO-1.0 sample maintains a three-dimensional (3D) dodecahedron structure with a larger sp. surface area (22.79 m2 g-1) and has more oxygen vacancies. Because of the unique ZIF structure, abundant surface defects and the formation of Au-ZnO Schottky junctions, an Au/ZnO-1.0 sensor has a response factor of 37.74 for 100 ppm ethanol at 250°C, which is about 6 times that of pure ZnO material. In addition, the Au/ZnO-1.0 sensor has good selectivity for ethanol. According to d. functional theory (DFT) calculations, the adsorption energy of Au/ZnO for ethanol (-1.813 eV) is significantly greater than that of pure ZnO (-0.217 eV). Furthermore, the adsorption energy for ethanol is greater than that of other gases.

Recommanded Product: 1,2-Dimethyl-1H-imidazole, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Kaiser, Teresa team published research in Chemie Ingenieur Technik in 2020 | 1739-84-0

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., HPLC of Formula: 1739-84-0

Imidazole derivatives generally have good solubility in protic solvents. Simple imidazole derivatives, such as 1H-imidazole, 2-methyl-1H-imidazole, and 1,2-dimethylimidazole, have very high solubility in water. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. Their solubility in alcohol is lower than that in water and decreases with increasing molecular weight of the alcohols . HPLC of Formula: 1739-84-0.

Kaiser, Teresa;Kabatnik, Christoph;Jupke, Andreas research published 《 Influence of Reaction Conditions on the Settling Behavior of Liquid-Liquid Dispersions》, the research content is summarized as follows. The settling behavior of liquid-liquid dispersions at ambient temperature and pressure is well investigated. However, little is known about the settling behavior of those systems at high pressure and high temperature In this work, a novel stainless steel settling cell is presented, enabling investigations on liquid-liquid settling behavior at high pressures up to 130 bar. The settling behavior of a promising CO2 hydrogenation reaction system is investigated by sequentially determining influences of dissolved CO2, side components, and temperature

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., HPLC of Formula: 1739-84-0

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Jumde, Ravindra P. team published research in Chemical Science in 2021 | 10111-08-7

Application In Synthesis of 10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., 10111-08-7.

Imidazole is a five-membered heterocyclic moiety that possesses three carbon, two nitrogen, four hydrogen atoms, and two double bonds. 10111-08-7, formula is C4H4N2O, Name is 1H-Imidazole-2-carbaldehyde. It is also known as 1, 3-diazole. It contains two nitrogen atoms, in which one nitrogen bear a hydrogen atom, and the other is called pyrrole type nitrogen. Application In Synthesis of 10111-08-7.

Jumde, Ravindra P.;Guardigni, Melissa;Gierse, Robin M.;Alhayek, Alaa;Zhu, Di;Hamid, Zhoor;Johannsen, Sandra;Elgaher, Walid A. M.;Neusens, Philipp J.;Nehls, Christian;Haupenthal, Joerg;Reiling, Norbert;Hirsch, Anna K. H. research published 《 Hit-optimization using target-directed dynamic combinatorial chemistry: development of inhibitors of the anti-infective target 1-deoxy-D-xylulose-5-phosphate synthase》, the research content is summarized as follows. Target-directed dynamic combinatorial chem. (tdDCC) enables identification, as well as optimization of ligands for un(der)explored targets such as the anti-infective target 1-deoxy-D-xylulose-5-phosphate synthase (DXPS). We report the use of tdDCC to first identify and subsequently optimize binders/inhibitors of the anti-infective target DXPS. The initial hits were also optimized for their antibacterial activity against E. coli and M. tuberculosis during subsequent tdDCC runs. Using tdDCC, we were able to generate acylhydrazone-based inhibitors of DXPS. The tailored tdDCC runs also provided insights into the structure-activity relationship of this novel class of DXPS inhibitors. The competition tdDCC runs provided important information about the mode of inhibition of acylhydrazone-based inhibitors. This approach holds the potential to expedite the drug-discovery process and should be applicable to a range of biol. targets.

Application In Synthesis of 10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., 10111-08-7.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Werr, Marco’s team published research in Chemistry – A European Journal in 2019 | CAS: 4857-06-1

2-Chloro-1H-benzo[d]imidazole(cas: 4857-06-1) binds to monoclonal antibodies, inhibiting their binding to their corresponding antigens. This activity may be due to its ability to bind covalently with amino groups on proteins and other molecules.Name: 2-Chloro-1H-benzo[d]imidazole

In 2019,Chemistry – A European Journal included an article by Werr, Marco; Kaifer, Elisabeth; Wadepohl, Hubert; Himmel, Hans-Joerg. Name: 2-Chloro-1H-benzo[d]imidazole. The article was titled 《Tuneable Redox Chemistry and Electrochromism of Persistent Symmetric and Asymmetric Azine Radical Cations》. The information in the text is summarized as follows:

Mol. organic radicals have been intensively studied in the last decades, due to their interesting optical, magnetic and redox properties. Here we report the synthesis and characterization of persistent organic radicals from one-electron oxidation of redox-active azines (RAAs), composed of two guanidinyl or related groups. By connecting two different groups together, asym. compounds result. In this way a series of compounds with varying redox potential is obtained that could be oxidized reversibly to the mono- and the dicationic charge states. The accessible redox states were fully determined by chem. redox reactions. The standard Gibbs free energy change for disproportionation of the radical monocation into the dication and the neutral mol. in solution, estimated from cyclovoltammetric measurements, varies between 43 and 71 kJ mol-1. While the neutral RAAs absorb predominately UV light, the radical monocations display strong absorptions covering almost the entire visible region and extending for some compounds into the NIR region. A detailed anal. of this highly reversible electrochromism is presented, and the fast switching characteristics are demonstrated in an electrochromic test device. In the experiment, the researchers used many compounds, for example, 2-Chloro-1H-benzo[d]imidazole(cas: 4857-06-1Name: 2-Chloro-1H-benzo[d]imidazole)

2-Chloro-1H-benzo[d]imidazole(cas: 4857-06-1) binds to monoclonal antibodies, inhibiting their binding to their corresponding antigens. This activity may be due to its ability to bind covalently with amino groups on proteins and other molecules.Name: 2-Chloro-1H-benzo[d]imidazole

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Wang, Xin’s team published research in Organic & Biomolecular Chemistry in 2019 | CAS: 4857-06-1

2-Chloro-1H-benzo[d]imidazole(cas: 4857-06-1) binds to monoclonal antibodies, inhibiting their binding to their corresponding antigens. This activity may be due to its ability to bind covalently with amino groups on proteins and other molecules.Electric Literature of C7H5ClN2

In 2019,Organic & Biomolecular Chemistry included an article by Wang, Xin; Li, Changhao; Zhang, Yixiao; Zhang, Bing; Sun, Kai. Electric Literature of C7H5ClN2. The article was titled 《Direct methyl C(sp3)-H azolation of thioanisoles via oxidative radical coupling》. The information in the text is summarized as follows:

A method for metal-free, 1,3-dibromo-5,5-dimethylhydantoin mediated Me C(sp3)-H bond azolation of thioanisoles RC6H4SCH3 (R = H, 2-H3CO, 3-Cl, 4-F, etc.) has been developed, affording a facile route for the construction of nitrogen-functionalized thioanisoles RC6H4SCH2R1 (R1 = 2-chloro-1H-1,3-benzodiazol-1-yl, 1H-1,2,3-benzotriazol-1-yl, 5-phenyl-1H-1,2,3,4-tetrazol-1-yl, etc.), possibly via a nitrogen-centered radical process. This reaction represents an important addition to the limited number of existing methods for the Me C(sp3)-H bond functionalization of thioanisoles, and may find practical application in the synthesis of nitrogen-alkylated azoles. After reading the article, we found that the author used 2-Chloro-1H-benzo[d]imidazole(cas: 4857-06-1Electric Literature of C7H5ClN2)

2-Chloro-1H-benzo[d]imidazole(cas: 4857-06-1) binds to monoclonal antibodies, inhibiting their binding to their corresponding antigens. This activity may be due to its ability to bind covalently with amino groups on proteins and other molecules.Electric Literature of C7H5ClN2

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Khorasani, Media Ghasem Zadeh’s team published research in Nanomaterials in 2019 | CAS: 616-47-7

1-Methyl-1H-imidazole(cas: 616-47-7) is actively involved in removing acid during the production of diethoxyphenylphosphine. It is used as an intermediate in organic synthesis.Reference of 1-Methyl-1H-imidazole

In 2019,Nanomaterials included an article by Khorasani, Media Ghasem Zadeh; Elert, Anna-Maria; Hodoroaba, Vasile-Dan; Jacome, Leonardo Agudo; Altmann, Korinna; Silbernagl, Dorothee; Sturm, Heinz. Reference of 1-Methyl-1H-imidazole. The article was titled 《Short- and long-range mechanical and chemical interphases caused by interaction of boehmite (γ-AlOOH) with anhydride-cured epoxy resins》. The information in the text is summarized as follows:

Understanding the interaction between boehmite and epoxy and the formation of their interphases with different mech. and chem. structures is crucial to predict and optimize the properties of epoxy-boehmite nanocomposites. Probing the interfacial properties with at. force microscopy-based methods, especially particle-matrix long-range interactions, is challenging. This is due to size limitations of various anal. methods in resolving nanoparticles and their interphases, the overlap of interphases, and the effect of buried particles that prevent the accurate interphase property measurement. Here, we develop a layered model system in which the epoxy is cured in contact with a thin layer of hydrothermally synthesized boehmite. Different microscopy methods are employed to evaluate the interfacial properties. With intermodulation at. force microscopy and amplitude dependence force spectroscopy, which contain information about stiffness, electrostatic, and van der Waals forces, a soft interphase was detected between the epoxy and boehmite. Surface potential maps obtained by scanning Kelvin probe microscopy revealed another interphase about one order of magnitude larger than the mech. interphase. The AFM-IR spectroscopy technique reveals that the soft interphase consists of unreacted curing agent. The long-range elec. interphase is attributed to the chem. alteration of the bulk epoxy and the formation of new absorption bands. In addition to this study using 1-Methyl-1H-imidazole, there are many other studies that have used 1-Methyl-1H-imidazole(cas: 616-47-7Reference of 1-Methyl-1H-imidazole) was used in this study.

1-Methyl-1H-imidazole(cas: 616-47-7) is actively involved in removing acid during the production of diethoxyphenylphosphine. It is used as an intermediate in organic synthesis.Reference of 1-Methyl-1H-imidazole

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem