Kowalczyk, Pawel; Ciesla, Jaroslaw M.; Saparbaev, Murat; Laval, Jacques; Tudek, Barbara published an article in 2006, the title of the article was Sequence-specific p53 gene damage by chloroacetaldehyde and its repair kinetics in Escherichia coli.Related Products of 55662-66-3 And the article contains the following content:
Oxidative stress and certain environmental carcinogens, e.g. vinyl chloride and its metabolite chloroacetaldehyde (CAA), introduce promutagenic exocyclic adducts into DNA, among them 1,N6-ethenoadenine (εA), 3,N4-ethenocytosine (εC) and N2,3-ethenoguanine (εG). We studied sequence-specific interaction of the vinyl-chloride metabolite CAA with human p53 gene exons 5-8, using DNA Polymerase Fingerprint Anal. (DPFA), and identified sites of the highest sensitivity. CAA-induced DNA damage was more extensive in p53 regions which revealed secondary structure perturbations, and were localized in regions of mutation hot-spots. These perturbations inhibited DNA synthesis on undamaged template. We also studied the repair kinetics of CAA-induced DNA lesions in E. coli at nucleotide resolution level. A plasmid bearing full length cDNA of human p53 gene was modified in vitro with 360 mM CAA and transformed into E. coli DH5α strain, in which the adaptive response system had been induced by MMS treatment before the cells were made competent. Following transformation, plasmids were re-isolated from transformed cultures 35, 40, 50 min and 1-24 h after transformation, and further subjected to LM-PCR, using ANPG, MUG and Fpg glycosylases to identify the sites of DNA damage. In adaptive response-induced E. coli cells the majority of DNA lesions recognized by ANPG glycosylase were removed from plasmid DNA within 35 min, while MUG glycosylase excised base modifications only within 50 min, both in a sequence-dependent manner. In non-adapted cells resolution of plasmid topol. forms was perturbed, suggesting inhibition of one or more bacterial topoisomerases by unrepaired ε-adducts. We also observed delayed consequences of DNA modification with CAA, manifesting as secondary DNA breaks, which appeared 3 h after transformation of damaged DNA into E. coli, and were repaired after 24 h. The experimental process involved the reaction of Imidazo[1,2-c]pyrimidin-5(6H)-one(cas: 55662-66-3).Related Products of 55662-66-3
The Article related to p53 gene dna damage repair kinetics chloroacetaldehyde escherichia, Toxicology: Carcinogens, Mutagens, and Teratogens and other aspects.Related Products of 55662-66-3
Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem