Azlan, Nadiah Syafiqah Mohd et al. published their research in Materials Today: Proceedings in 2022 | CAS: 478935-29-4

1-Hexyl-3-methyl-1H-imidazol-3-ium hydrogensulfate (cas: 478935-29-4) belongs to imidazole derivatives. Imidazole is the basic core of some natural products such as histidine, purine, histamine and DNA based structures, etc. Among the different heterocyclic compounds, imidazole is better known due to its broad range of chemical and biological properties. The pharmacophore of imidazole exists in bioactive compounds including amino acids, plant growth regulators and therapeutic agents.n increase of the alkyl chain length of the alcohols. Application In Synthesis of 1-Hexyl-3-methyl-1H-imidazol-3-ium hydrogensulfate

Effectiveness of various solvents in the microwave-assisted extraction of cellulose from oil palm mesocarp fiber was written by Azlan, Nadiah Syafiqah Mohd;Yap, Chiew Lin;Gan, Suyin;Rahman, Mohd Basyaruddin Abdul. And the article was included in Materials Today: Proceedings in 2022.Application In Synthesis of 1-Hexyl-3-methyl-1H-imidazol-3-ium hydrogensulfate The following contents are mentioned in the article:

Cellulose is a valuable resource for organic synthesis owing to its low cost, abundance, and sustainability. However, crystalline cellulose in lignocellulosic biomass is frequently smothered by the recalcitrant amorphous layers of lignin and hemicellulose that limit its extractability. Therefore, this study aimed to find the best solvent to combine with a microwave-assisted method for fast and efficient extraction of cellulose from oil palm mesocarp fiber. Results showed that γ-valerolactone gave the highest average cellulose yield (64.0%), followed by protic solvents viz. 2-butoxyethanol (62.8%) and Et lactate (57.3%), however, there was no statistical difference (p > 0.05) between the three solvents. Crystalline cellulose in biomass seems to interact with aprotic solvent via dipole-dipole interactions slightly more efficiently than with protic solvent via hydrogen bonds. However, as an aprotic solvent, Et acetate showed an exception low cellulose yield (50.7%), presumably due to its b.p. which is lower than the operating temperature Among all, ILs ([BMIM][Cl], [HMIM][HSO4] and [EMIM][Ac]) performed the poorest giving only 36.0% to 52.0% of cellulose yields. The mixture of [HMIM][HSO4]/γ-valerolactone (1:1, volume/volume) performed similar to the sole [HMIM][HSO4]. Overall, the combination of γ-valerolactone and microwave extraction allowed a high yield of cellulose to be achieved within a short period of 2 min, at a relatively low temperature of 140°C, although faint hydrolysis into glucose was detected. The cellulose extracted from γ-valerolactone showed a higher crystallinity index (46.81%) than raw biomass (24.06%), indicating a high purity product and the removal of amorphous portion. This study involved multiple reactions and reactants, such as 1-Hexyl-3-methyl-1H-imidazol-3-ium hydrogensulfate (cas: 478935-29-4Application In Synthesis of 1-Hexyl-3-methyl-1H-imidazol-3-ium hydrogensulfate).

1-Hexyl-3-methyl-1H-imidazol-3-ium hydrogensulfate (cas: 478935-29-4) belongs to imidazole derivatives. Imidazole is the basic core of some natural products such as histidine, purine, histamine and DNA based structures, etc. Among the different heterocyclic compounds, imidazole is better known due to its broad range of chemical and biological properties. The pharmacophore of imidazole exists in bioactive compounds including amino acids, plant growth regulators and therapeutic agents.n increase of the alkyl chain length of the alcohols. Application In Synthesis of 1-Hexyl-3-methyl-1H-imidazol-3-ium hydrogensulfate

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem