Liu, Qian et al. published their research in Journal of Molecular Liquids in 2022 | CAS: 478935-29-4

1-Hexyl-3-methyl-1H-imidazol-3-ium hydrogensulfate (cas: 478935-29-4) belongs to imidazole derivatives. Many natural products, especially alkaloids, contain the imidazole ring. These imidazoles share the 1,3-C3N2 ring but feature varied substituents. Imidazole has been usedin the lysis, wash and elution buffer for the purification of histidine tagged Sonic Hedgehog(shh-N) protein, in elution buffer in stepwise gradient for the purification of histidine tagged aldo keto reductases using nickel affinity chromatography, as a component of homogenization buffer for the purification of phagosomal compartments from dendritic cells.Application In Synthesis of 1-Hexyl-3-methyl-1H-imidazol-3-ium hydrogensulfate

Highly efficient separation of phenolic compounds from low-temperature coal tar by composite extractants with low viscosity was written by Liu, Qian;Zhang, Xianglan. And the article was included in Journal of Molecular Liquids in 2022.Application In Synthesis of 1-Hexyl-3-methyl-1H-imidazol-3-ium hydrogensulfate The following contents are mentioned in the article:

Highly efficient separation of phenolic compounds from low-temperature coal tar (LTCT) is significant in the industry. In this work, composite extractants composed of imidazolium-based ionic liquids (ILs) and solvents were used to sep. phenolic compounds from model oil and LTCT. First, the COSMO-RS model was used to screen composite extractants that combined the infinite dilution thermodn. indexes and liquid-liquid equilibrium (LLE) calculations Meanwhile, the separation mechanism was analyzed by σ-profile and σ-potential. Then, the reliability of the COSMO-RS model was validated by LLE experiments and FT-IR. The viscosity of composite extractants with high separation performance was further determined Among the composite extractants, 1-ethyl-3-methyl-imidazolium hydrogen sulfate ([emim][HSO4])/ethylene glycol (EG) was selected as the most suitable extractant in the separation process. The m-cresol extraction efficiency and cumene entrainment were 98.1% and 8.3%, resp., at a [emim][HSO4]:EG molar ratio of 1:2, a temperature of 25 °C, and a composite extractant: model oil mass ratio of 1:1. Moreover, the viscosity of [emim][HSO4]:EG (1:2) was only 51.8 cP at 25 °C and decreased by 95.6% compared with pure [emim][HSO4], which enhanced the mass transfer in the separation process. The [emim][HSO4]:EG (1:2) could be regenerated and reused without significant reduction in separation performance. Finally, [emim][HSO4]:EG (1:2) was applied to sep. phenolic compounds from LTCT with a phenol extraction efficiency of more than 99.9% and a neutral oil entrainment of 8.3%, providing a promising prospect for the separation of phenolic compounds This study involved multiple reactions and reactants, such as 1-Hexyl-3-methyl-1H-imidazol-3-ium hydrogensulfate (cas: 478935-29-4Application In Synthesis of 1-Hexyl-3-methyl-1H-imidazol-3-ium hydrogensulfate).

1-Hexyl-3-methyl-1H-imidazol-3-ium hydrogensulfate (cas: 478935-29-4) belongs to imidazole derivatives. Many natural products, especially alkaloids, contain the imidazole ring. These imidazoles share the 1,3-C3N2 ring but feature varied substituents. Imidazole has been usedin the lysis, wash and elution buffer for the purification of histidine tagged Sonic Hedgehog(shh-N) protein, in elution buffer in stepwise gradient for the purification of histidine tagged aldo keto reductases using nickel affinity chromatography, as a component of homogenization buffer for the purification of phagosomal compartments from dendritic cells.Application In Synthesis of 1-Hexyl-3-methyl-1H-imidazol-3-ium hydrogensulfate

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem