A unified platform enabling biomarker ranking and validation for 1562 drugs using transcriptomic data of 1250 cancer cell lines was written by Tibor Fekete, Janos;Gyorffy, Balazs. And the article was included in Computational and Structural Biotechnology Journal in 2022.Recommanded Product: 16506-27-7 The following contents are mentioned in the article:
In vitro cell line models provide a valuable resource to investigate compounds useful in the systemic chemotherapy of cancer. However, the due to the dispersal of the data into several different databases, the utilization of these resources is limited. Here, our aim was to establish a platform enabling the validation of chemoresistance-associated genes and the ranking of available cell line models. We processed four independent databases, DepMap, GDSC1, GDSC2, and CTRP. The gene expression data was quantile normalized and HUGO gene names were assigned to have unambiguous identification of the genes. Resistance values were exported for all agents. The correlation between gene expression and therapy resistance is computed using ROC test. We combined four datasets with chemosensitivity data of 1562 agents and transcriptome-level gene expression of 1250 cancer cell lines. We have set up an online tool utilizing this database to correlate available cell line sensitivity data and treatment response in a uniform anal. pipeline. We employed the established pipeline to by rank genes related to resistance against afatinib and lapatinib, two inhibitors of the tyrosine-kinase domain of ERBB2. The computational tool is useful 1) to correlate gene expression with resistance, 2) to identify and rank resistant and sensitive cell lines, and 3) to rank resistance associated genes, cancer hallmarks, and gene ontol. pathways. The platform will be an invaluable support to speed up cancer research by validating gene-resistance correlations and by selecting the best cell line models for new experiments This study involved multiple reactions and reactants, such as 4-(5-(Bis(2-chloroethyl)amino)-1-methyl-1H-benzo[d]imidazol-2-yl)butanoic acid (cas: 16506-27-7Recommanded Product: 16506-27-7).
4-(5-(Bis(2-chloroethyl)amino)-1-methyl-1H-benzo[d]imidazol-2-yl)butanoic acid (cas: 16506-27-7) belongs to imidazole derivatives. The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with a This ring system is present in important biological building blocks, such as histidine and the related hormone histamine.Recommanded Product: 16506-27-7
Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem