Rose, Honor M.’s team published research in Proceedings of the National Academy of Sciences of the United States of America in 111 | CAS: 359860-27-8

Proceedings of the National Academy of Sciences of the United States of America published new progress about 359860-27-8. 359860-27-8 belongs to imidazoles-derivatives, auxiliary class Other Aliphatic Heterocyclic,Chiral,Amine,Amide,Ether,Inhibitor, name is N-(2-(2-(2-(2-Aminoethoxy)ethoxy)ethoxy)ethyl)-5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamide, and the molecular formula is C18H34N4O5S, Recommanded Product: N-(2-(2-(2-(2-Aminoethoxy)ethoxy)ethoxy)ethyl)-5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamide.

Rose, Honor M. published the artcileDevelopment of an antibody-based, modular biosensor for 129Xe NMR molecular imaging of cells at nanomolar concentrations, Recommanded Product: N-(2-(2-(2-(2-Aminoethoxy)ethoxy)ethoxy)ethyl)-5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamide, the publication is Proceedings of the National Academy of Sciences of the United States of America (2014), 111(32), 11697-11702, database is CAplus and MEDLINE.

Magnetic resonance imaging (MRI) is seriously limited when aiming for visualization of targeted contrast agents. Images are reconstructed from the weak diamagnetic properties of the sample and require an abundant mol. like water as the reporter. Micromolar to millimolar concentrations of conventional contrast agents are needed to generate image contrast, thus excluding many mol. markers as potential targets. To address this limitation, we developed and characterized a functional xenon NMR biosensor that can identify a specific cell surface marker by targeted 129Xe MRI. Cells expressing the cell surface protein CD14 can be spatially distinguished from control cells with incorporation of as little as 20 nM of the xenon MRI readout unit, cryptophane-A. Cryptophane-A serves as a chem. host for hyperpolarized nuclei and facilitates the sensitivity enhancement achieved by xenon MRI. Although this paper describes the application of a CD14-specific biosensor, the construct has been designed in a versatile, modular fashion. This allows for quick and easy adaptation of the biosensor to any cell surface target for which there is a specific antibody. In addition, the modular design facilitates the creation of a multifunctional probe that incorporates readout modules for different detection methods, such as fluorescence, to complement the primary MRI readout. This modular antibody-based approach not only offers a practical technique with which to screen targets, but one which can be readily applied as the xenon MRI field moves closer to mol. imaging applications in vivo.

Proceedings of the National Academy of Sciences of the United States of America published new progress about 359860-27-8. 359860-27-8 belongs to imidazoles-derivatives, auxiliary class Other Aliphatic Heterocyclic,Chiral,Amine,Amide,Ether,Inhibitor, name is N-(2-(2-(2-(2-Aminoethoxy)ethoxy)ethoxy)ethyl)-5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamide, and the molecular formula is C18H34N4O5S, Recommanded Product: N-(2-(2-(2-(2-Aminoethoxy)ethoxy)ethoxy)ethyl)-5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamide.

Referemce:
https://en.wikipedia.org/wiki/Imidazole,
Imidazole | C3H4N2 – PubChem