Baca, Kalin R. et al. published their research in ACS Sustainable Chemistry & Engineering in 2022 | CAS: 79917-89-8

1-Methyl-3-propylimidazolium Chloride (cas: 79917-89-8) belongs to imidazole derivatives. 1H-imidazole is an imidazole tautomer which has the migrating hydrogen at position 1. It is a conjugate base of an imidazolium cation. It is a conjugate acid of an imidazolide. It is a tautomer of a 4H-imidazole. Imidazole based anticancer drug find applications in cancer chemotherapy. It is used as buffer component for purification of the histidine tagged recombinant proteins in immobilized metal-affinity chromatography (IMAC).Quality Control of 1-Methyl-3-propylimidazolium Chloride

Phase Equilibria and Diffusivities of HFC-32 and HFC-125 in Ionic Liquids for the Separation of R-410A was written by Baca, Kalin R.;Olsen, Greta M.;Matamoros Valenciano, Lucia;Bennett, Madelyn G.;Haggard, Dorothy M.;Befort, Bridgette J.;Garciadiego, Alejandro;Dowling, Alexander W.;Maginn, Edward J.;Shiflett, Mark B.. And the article was included in ACS Sustainable Chemistry & Engineering in 2022.Quality Control of 1-Methyl-3-propylimidazolium Chloride This article mentions the following:

Current legislation calling for the phase out of hydrofluorocarbon (HFC) refrigerants is driving a global market shift that has prompted industry and research institutions to investigate new refrigerant mixtures and sustainable separation techniques for recycling refrigerants. The recent American Innovation and Manufacturing (AIM) Act of 2020 requires an 85% phase down of HFC production over the next 15 years. To achieve this goal, azeotropic refrigerant mixtures, such as R-410A composed of 50 wt % HFC-32 (difluoromethane, CH2F2) and 50 wt % HFC-125 (pentafluoroethane, CHF2CF3), will have to be separated to recycle the lower global warming HFC-32 component. The present work investigates the solubility of HFC-32 and HFC-125 in six ionic liquids (ILs) with halogen anions for the purpose of developing the thermophys. property data required for designing extractive distillation recycling processes and understanding the choice of cation and anion type. A gravimetric microbalance was used to collect isothermal vapor-liquid equilibrium data for each of the ILs at 298.15 K and pressures from 0.05 to 1.0 MPa. The Peng-Robinson equation of state was used to model the solubility of the HFCs in the ILs. The solubility of HFC-32 in the ILs showed small differences, while the solubility of HFC-125 had significant variations with respect to the anion type and the cation alkyl chain length. Fick’s law was applied to calculate diffusion coefficients for each HFC/IL system. HFC-32 has a greater diffusivity than HFC-125 based on the smaller mol. size. The 1-n-hexyl-3-methylimidazolium chloride and the trihexyl(tetradecyl)phosphonium chloride ILs have the highest HFC-125/HFC-32 selectivity at 298.15 K. Based on both the mass uptake and selectivity ratio, these two ILs are potential entrainers for the separation of R-410A using extractive distillation In the experiment, the researchers used many compounds, for example, 1-Methyl-3-propylimidazolium Chloride (cas: 79917-89-8Quality Control of 1-Methyl-3-propylimidazolium Chloride).

1-Methyl-3-propylimidazolium Chloride (cas: 79917-89-8) belongs to imidazole derivatives. 1H-imidazole is an imidazole tautomer which has the migrating hydrogen at position 1. It is a conjugate base of an imidazolium cation. It is a conjugate acid of an imidazolide. It is a tautomer of a 4H-imidazole. Imidazole based anticancer drug find applications in cancer chemotherapy. It is used as buffer component for purification of the histidine tagged recombinant proteins in immobilized metal-affinity chromatography (IMAC).Quality Control of 1-Methyl-3-propylimidazolium Chloride

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem