Lv, Jing team published research in Catalysis Communications in 2020 | 3034-50-2

Synthetic Route of 3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Imidazole based anticancer drug find applications in cancer chemotherapy. 3034-50-2, formula is C4H4N2O, Name is Imidazole-4-carbaldehyde. It is used as buffer component for purification of the histidine tagged recombinant proteins in immobilized metal-affinity chromatography (IMAC). Synthetic Route of 3034-50-2.

Lv, Jing;Meng, Xiang-Guang;Huang, Hong;Wang, Fei;Yu, Wen-Wang;Wu, Yan-Yan research published 《 Catalytic conversion of fructose to 1,3-dihydroxyacetone under mild conditions》, the research content is summarized as follows. A novel zwitterionic catalyst containing imidazole, carboxyl and amino functional groups was synthesized to catalyze the retro-aldol condensation of fructose. The catalyst displayed efficiently catalytic activity for the conversion of fructose to 1,3-dihydroxyacetone (DHA). The yield of DHA and selectivity of DHA achieved 27.9% and 46.5% after reaction 2 h, resp., at pH 9.5, 85°C. A possible catalytic mechanism was suggested. The charged functional groups on the catalyst exhibited synergistic effect and played role in electron induction and proton transfer, which leaded to a good selectivity of DHA in the conversion of fructose under mild conditions.

Synthetic Route of 3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem