Chen, Xiao-Lu team published research on Russian Journal of General Chemistry in 2020 | 1739-84-0

Name: 1,2-Dimethyl-1H-imidazole, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. Name: 1,2-Dimethyl-1H-imidazole.

Chen, Xiao-Lu;Li, Xiang-Yu;Li, Shuai-Shuai;Bai, Xue;Li, Tao;Goud, Erukala Yadaiah;Zhong, Chong-Min;Zuo, Ya-Jie research published 《 Ion-Functionalized Silver(I) Carboxylates: Synthesis and Application in Ru-Catalyzed Olefin Metathesis Reaction》, the research content is summarized as follows. The Grubbs-Hoveyda catalysts have a wide range of applications in catalyzed formation of the carbon-carbon double bonds. In this study, several imidazolium- functionalized or pyridinium-functionalized silver carboxylates have been prepared, and their reaction with Grubbs-Hoveyda 2nd generation (G-H 2nd) catalyst leads a new type of processes. Activity and selectivity of the catalysts have been preliminarily evaluated using cross olefin metathesis reactions.

Name: 1,2-Dimethyl-1H-imidazole, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Cho, Kyeong Min team published research on Carbon in 2020 | 1739-84-0

Formula: C5H8N2, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Imidazole is a five-membered heterocyclic moiety that possesses three carbon, two nitrogen, four hydrogen atoms, and two double bonds. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. It is also known as 1, 3-diazole. It contains two nitrogen atoms, in which one nitrogen bear a hydrogen atom, and the other is called pyrrole type nitrogen. Formula: C5H8N2.

Cho, Kyeong Min;So, Yujin;Choi, Seung Eun;Kwon, Ohchan;Park, Hyunjin;Chan Won, Jong;Kim, Hanim;Jung, Hee-Tae;Kim, Yun Ho;Kim, Dae Woo research published 《 Highly conductive polyimide nanocomposite prepared using a graphene oxide liquid crystal scaffold》, the research content is summarized as follows. High loading of aligned graphene filler is effective for fabricating polymer nanocomposites with drastically improved properties, while practical preparation of such composites remains elusive. This paper reports on a method of preparing polyimide (PI, BPDA/PDA) nanocomposites containing highly loaded graphene fillers that are uniformly aligned parallel to the coating substrate in the PI matrix. The highly aligned graphene/PI film was achieved by infiltrating water-soluble poly(amic acid) ammonium salt (PAAS) into the scaffold of the graphene oxide liquid crystal. After thermal treatment, a freestanding reduced graphene oxide/polyimide (rGO/PI) film was prepared with the imidization of PAAS and reduction of graphene oxide. Owing to the excellent mech. properties of the infiltrated PI, the hardness and modulus of the rGO/PI film were as high as 0.9 GPa and 9.3 GPa, resp. In addition, the rGO/PI film was highly conductive, with an elec. conductivity of 446 S/m, because of the well-connected elec. pathways of the highly loaded and aligned graphene sheets.

Formula: C5H8N2, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Cao, Liming team published research on ACS Sustainable Chemistry & Engineering in 2021 | 1739-84-0

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Synthetic Route of 1739-84-0

Imidazole is a five-membered heterocyclic moiety that possesses three carbon, two nitrogen, four hydrogen atoms, and two double bonds. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. It is also known as 1, 3-diazole. It contains two nitrogen atoms, in which one nitrogen bear a hydrogen atom, and the other is called pyrrole type nitrogen. Synthetic Route of 1739-84-0.

Cao, Liming;Gong, Zhou;Xu, Chuanhui;Chen, Yukun research published 《 Mechanical Strong and Recyclable Rubber Nanocomposites with Sustainable Cellulose Nanocrystals and Interfacial Exchangeable Bonds》, the research content is summarized as follows. Rubber is a strategically important polymeric material because of its high extensibility and resilience. However, traditional crosslinked rubber is difficult to be reprocessed or recycled due to the permanent covalent crosslinking, which puts a huge burden on the environment. Herein, we report a covalently crosslinked yet reprocessable carboxylated styrene butadiene rubber (CSBR) nanocomposite which is reinforced and crosslinked by epoxy-modified tunicate cellulose nanocrystals (TCNCs). The epoxy modification of TCNCs improves the dispersibility and the interfacial interactions with the matrix, thus improving the mech. properties of the nanocomposites. In addition, exchangeable ester bonds are formed at the rubber-filler interface, and the network topol. can be rearranged via the transesterification reactions. Therefore, the materials can be reprocessed and recycled under the evaluated temperatures In particular, by introducing metal coordination bonds to construct a dual dynamic network in the system, the mech. properties of the nanocomposites can be further improved without compromising the recycling and reprocessing performance.

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Synthetic Route of 1739-84-0

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Cavieres, Jenifer team published research on Journal of Molecular Liquids in 2022 | 1739-84-0

Recommanded Product: 1,2-Dimethyl-1H-imidazole, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Imidazole is a heterocyclic compound with a five-membered planar ring. It is amphoteric and highly polar. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. The pharmacophore of imidazole exists in bioactive compounds including amino acids, plant growth regulators and therapeutic agents. Recommanded Product: 1,2-Dimethyl-1H-imidazole.

Cavieres, Jenifer;Jose Inestrosa-Izurieta, Maria;Vasco, Diego A.;Urzua, Julio I. research published 《 Ionanofluids based on ionic liquid mixtures, a new approach as an alternative material for solar energy storage》, the research content is summarized as follows. Hybrid materials based on ionic liquids (ILs) known as Ionanofluids (INFs) have shown exciting improvements in their thermophys. properties compared to their base fluids (BF). Within this group, INFs obtained using mixtures of ionic liquids as BFs have been virtually ignored until now. In this work, INFs composed of two equimolar mixtures of ILs, [Omim][PF6] + [Odmim][PF6] and [Omim][PF6] + [Odmim][BF4] as base fluids and Multiwalled Carbon Nanotubes (MWCNTs) with weight percentages of 0.04, 0.06, 0.08, and 0.1 wt% were elaborated. Furthermore, the thermophys. properties of our proposed new materials were evaluated and compared to conventional materials currently used in solar energy storage systems. It was shown that the heat capacity (Cp) reaches increases of up to 3.7 and 3.2 times that of nitrated salts and the com. fluid Therminol VP-1, which translates into a 9.4% and 284% higher thermal storage d. (E), resp., and even lower thermal diffusivity (α), which supports the preliminary idea of using these new materials for energy storage.

Recommanded Product: 1,2-Dimethyl-1H-imidazole, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Bui, Khoa team published research on Industrial & Engineering Chemistry Research in 2022 | 1739-84-0

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Application of C5H8N2

Imidazole is a five-membered heterocyclic moiety that possesses three carbon, two nitrogen, four hydrogen atoms, and two double bonds. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. It is also known as 1, 3-diazole. It contains two nitrogen atoms, in which one nitrogen bear a hydrogen atom, and the other is called pyrrole type nitrogen. Application of C5H8N2.

Bui, Khoa;Wemyss, Alan M.;Zhang, Runan;Nguyen, Giao T. M.;Vancaeyzeele, Cedric;Vidal, Frederic;Plesse, Cedric;Wan, Chaoying research published 《 Tailoring Electromechanical Properties of Natural Rubber Vitrimers by Cross-Linkers》, the research content is summarized as follows. The growing demand for smart polymeric transducers such as dielec. elastomer actuators and energy harvesters has urged the use of sustainable and recyclable elastomeric materials. Vitrimer chem. has shed light on future reprocessable and recyclable thermosets and elastomers. In this work, epoxidized natural rubber (ENR) vitrimers were prepared using diacid or triacid crosslinkers and formed covalently crosslinking networks via thermally triggered reversible β-hydroxy ester bonds. The crosslinked ENR elastomers exhibited Arrhenius-type viscoelastic behavior with a complete stress relaxation between 140 and 160°C, i.e., vitrimer characteristics, which were highly dependent on the crosslinking temperature The mech. and dielec. properties of the ENR vitrimers can be tuned by varying the mol. structure and concentration of the crosslinkers. Among the diacid and triacid crosslinkers, Pripol 1017 fatty polyacid (P1017) and 3,3′-dithiopropionic acid (DTPA) had similar effects on the crosslinking d. and mech. properties of the ENR vitrimers. The highest tensile strength of 8.70 ± 1.9 or 15.6 ± 2.6 MPa was obtained at 6 mol % of P1017 or DTPA, resp. While for diamide-based diacid crosslinker (DME), 8 mol % was needed to reach the highest tensile strength of 13.1 ± 2.7 MPa for the elastomer. The three ENR vitrimers showed increased relative permittivity ε’ = 5~7 at 1 kHz while maintaining low dielec. losses compared to traditional dicumyl peroxide-cured ENR, with ε’ = 3.57 at 1 kHz. With the optimized acidic crosslinker concentrations of P1017 at 6 mol %, DTPA at 6 mol %, and DME at 8 mol %, the ENR vitrimers exhibited improved actuation capabilities at lower elec. fields. Utilizing dynamic crosslinkers to tune the electromech. properties of dielec. elastomers and the reversibly crosslinked polymer networks will open new opportunities for smart and sustainable dielec. elastomer devices.

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Application of C5H8N2

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Cao, Lei team published research on Organic Process Research & Development in 2022 | 1739-84-0

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Name: 1,2-Dimethyl-1H-imidazole

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. Name: 1,2-Dimethyl-1H-imidazole.

Cao, Lei;Kim, Hong Won;Jeong, Yu Jin;Han, Seung Chang;Park, Jin Kyoon research published 《 Rapid Continuous-Flow Water-Free Synthesis of Ultrapure Ionic Liquids Assisted by Microwaves》, the research content is summarized as follows. A wide range of imidazole, pyridine including insoluble polymers, and tertiary amine derivatives rapidly reacted with orthoformate using various Bronsted acids or ammonium salts to control the anionic parts. The corresponding ionic liquids were formed in excellent yields under microwave-batch conditions within 10 min. A scale-up synthesis was easily achieved using a microwave flow system. Typically, [BMIM][BF4] was produced at a rate of 26.2 g/h under an Ar atm. with an E-factor of 0.8. Both batch and flow experiments were also performed in a domestic microwave oven.

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Name: 1,2-Dimethyl-1H-imidazole

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Barlaam, Bernard team published research on Journal of Medicinal Chemistry in 2020 | 1739-84-0

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Category: imidazoles-derivatives

Imidazole is a five-membered heterocyclic moiety that possesses three carbon, two nitrogen, four hydrogen atoms, and two double bonds. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. It is also known as 1, 3-diazole. It contains two nitrogen atoms, in which one nitrogen bear a hydrogen atom, and the other is called pyrrole type nitrogen. Category: imidazoles-derivatives.

Barlaam, Bernard;Casella, Robert;Cidado, Justin;Cook, Calum;De Savi, Chris;Dishington, Allan;Donald, Craig S.;Drew, Lisa;Ferguson, Andrew D.;Ferguson, Douglas;Glossop, Steve;Grebe, Tyler;Gu, Chungang;Hande, Sudhir;Hawkins, Janet;Hird, Alexander W.;Holmes, Jane;Horstick, James;Jiang, Yun;Lamb, Michelle L.;McGuire, Thomas M.;Moore, Jane E.;O’Connell, Nichole;Pike, Andy;Pike, Kurt G.;Proia, Theresa;Roberts, Bryan;San Martin, Maryann;Sarkar, Ujjal;Shao, Wenlin;Stead, Darren;Sumner, Neil;Thakur, Kumar;Vasbinder, Melissa M.;Varnes, Jeffrey G.;Wang, Jianyan;Wang, Lei;Wu, Dedong;Wu, Liangwei;Yang, Bin;Yao, Tieguang research published 《 Discovery of AZD4573, a Potent and Selective Inhibitor of CDK9 That Enables Short Duration of Target Engagement for the Treatment of Hematological Malignancies》, the research content is summarized as follows. A CDK9 inhibitor having short target engagement would enable a reduction of Mcl-1 activity, resulting in apoptosis in cancer cells dependent on Mcl-1 for survival. We report the optimization of a series of amidopyridines (from compound 2), focusing on properties suitable for achieving short target engagement after i.v. administration. By increasing potency and human metabolic clearance, we identified compound 24, a potent and selective CDK9 inhibitor with suitable predicted human pharmacokinetic properties to deliver transient inhibition of CDK9. Furthermore, the solubility of 24 was considered adequate to allow i.v. formulation at the anticipated ED. Short-term treatment with compound 24 led to a rapid dose- and time-dependent decrease of pSer2-RNAP2 and Mcl-1, resulting in cell apoptosis in multiple hematol. cancer cell lines. Intermittent dosing of compound 24 demonstrated efficacy in xenograft models derived from multiple hematol. tumors. Compound 24 is currently in clin. trials for the treatment of hematol. malignancies.

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Category: imidazoles-derivatives

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Bellina, Fabio team published research on RSC Advances in 2021 | 1739-84-0

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Computed Properties of 1739-84-0

Imidazole based anticancer drug find applications in cancer chemotherapy. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. It is used as buffer component for purification of the histidine tagged recombinant proteins in immobilized metal-affinity chromatography (IMAC). Computed Properties of 1739-84-0.

Bellina, Fabio;Biagetti, Matteo;Guariento, Sara;Lessi, Marco;Fausti, Mattia;Ronchi, Paolo;Rosadoni, Elisabetta research published 《 Ligand-free Pd/Ag-mediated dehydrogenative alkynylation of imidazole derivatives》, the research content is summarized as follows. A variety of 2-alkynyl(benzo)imidazoles I (R = Ph, n-hexyl, 2-chlorophenyl, etc.; R1 = R2 = H; R1R2 = -CH=CH-CH=CH-) have been synthesized by dehydrogenative alkynation of N-methylimidazole or 1-methyl-1H-1,3-benzodiazole with terminal alkynes RCCH in NMP under air in the presence of Ag2CO3 as the oxidant and Pd(OAc)2 as the catalyst precursor. The data obtained in this study support a reaction mechanism involving a non-concerted metalation deprotonation (n-CMD) pathway.

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Computed Properties of 1739-84-0

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Bores, Cecilia team published research on Physical Chemistry Chemical Physics in 2022 | 1739-84-0

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Category: imidazoles-derivatives

Imidazole derivatives generally have good solubility in protic solvents. Simple imidazole derivatives, such as 1H-imidazole, 2-methyl-1H-imidazole, and 1,2-dimethylimidazole, have very high solubility in water. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. Their solubility in alcohol is lower than that in water and decreases with increasing molecular weight of the alcohols . Category: imidazoles-derivatives.

Bores, Cecilia;Luo, Song;David Lonergan, J.;Richardson, Eden;Engstrom, Alexander;Fan, Wei;Auerbach, Scott M. research published 《 Monte carlo simulations and experiments of all-silica zeolite LTA assembly combining structure directing agents that match cage sizes》, the research content is summarized as follows. The effect is investigated of organic structure-directing agents (OSDAs) on the formation rates of all-silica zeolite LTA using both simulations and experiments, to shed light on the crystallization process. Syntheses are compared using one OSDA with a diameter close to the size of the large cavity in LTA and two OSDAs of diameters matching the sizes of both the small and large LTA cavities. Reaction-ensemble Monte Carlo (RxMC) simulations predict a speed up of LTA formation using two OSDAs matching the LTA pore sizes; this qual. result is confirmed by exptl. studies of crystallization kinetics, which find a speedup in all-silica LTA crystallization of a factor of 3. Analyses of simulated rings and their Si-O-Si angular energies during RxMC crystallizations show that all ring sizes in the faster crystallization exhibit lower angular energies, on average, than in the slower crystallization, explaining the origin of the speedup through packing effects.

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Category: imidazoles-derivatives

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Boualavong, Jonathan team published research on ACS ES&T Engineering in 2021 | 1739-84-0

Category: imidazoles-derivatives, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Imidazole Biochem/physiol Actions: Imidazole derivatives have antibacterial, antifungal and anticancer functionality. It interacts with DNA and also binds to protein and stops cell division. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. It also acts as a microtubule destabilizing agents and inhibits topoisomerase and Cytochrome P450 Family 26 Subfamily A Member 1 (CYP26A1) enzymes. Category: imidazoles-derivatives.

Boualavong, Jonathan;Gorski, Christopher A. research published 《 Electrochemically Mediated CO2 Capture Using Aqueous Cu(II)/Cu(I) Imidazole Complexes》, the research content is summarized as follows. A major goal of developing electrochem. CO2 capture technologies is to minimize the energy demand. One strategy for decreasing energy demands of electrochem. capture technologies is increasing the ratio of CO2 mols. captured per transferred electron. Here, we examined an electrochem. capture approach that has the potential to capture up to two CO2 mols. per electron, which is higher than many existing approaches. We used the Cu(II)/Cu(I) redox couple to control the aqueous availability of a CO2 sorbent, 1,2-dimethylimidazole (Me2Im), by transitioning between Cu(Me2Im)4(aq)2+ and Cu(Me2Im)2(aq)+. As expected from equilibrium calculations, a solution containing reduced Cu(I) had a greater CO2 capacity than the oxidized Cu(II) state. In a bench-scale test, the energy demand for CO2 capture was 27 ± 6 kJe/mol C, despite operating at 7-11% energy efficiency due to a high exptl.-set cell voltage. We estimate that under market-ready concentration conditions and the same low energy efficiency, the energy demand will be approx. 65 ± 14 kJe/mol C, although it can only remove 60% of the CO2 from coal power plant flue gas (PCO2 = 0.15 atm) at equilibrium To address this issue, we used an equilibrium model of the relevant chem. reactions to identify how altering the substituent groups on imidazole will influence the CO2 capture capacity and energy demand.

Category: imidazoles-derivatives, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem