Bostan, Hayri team published research on Journal of Autoimmunity in 2022 | 60-56-0

Application In Synthesis of 60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., 60-56-0.

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 60-56-0, formula is C4H6N2S, Name is 1-Methyl-1H-imidazole-2(3H)-thione. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. Application In Synthesis of 60-56-0.

Bostan, Hayri;Ucan, Bekir;Kizilgul, Muhammed;Calapkulu, Murat;Hepsen, Sema;Gul, Umran;Ozturk Unsal, Ilknur;Cakal, Erman research published 《 Relapsed and newly diagnosed Graves’ disease due to immunization against COVID-19: A case series and review of the literature》, the research content is summarized as follows. In addition to genetic factors, environmental factors such as viruses are thought to be triggers in the development of autoimmune thyroid diseases (AITD) such as Graves disease (GD). In this context, AITD cases that may be associated with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or immunization have begun to be reported in increasing numbers Although it is not clear by which pathogenetic mechanisms immunization against coronavirus disease 2019 (COVID-19) triggers the development of AITD, both the potential effect of the adjuvants in the vaccines and the cross-reactivity that can be generated by the mol. similarity of viral particles with mammalian proteins seem to be possible mechanisms. In this article, 7 GD patients consisting of relapsed and newly diagnosed cases following the COVID-19 vaccination were presented. Of these 7 cases, 5 (71.4%) were female, and the median age of the patients was 47 years (range, 31-53). One of the patients was associated with the inactivated COVID-19 vaccine, while the others were associated with the mRNA COVID-19 vaccine. The median post-vaccination symptom onset was 7 days (range, 4-30). Three of the patients had a history of GD and one had a history of Hashimotos thyroiditis. Rapidly developing Graves ophthalmopathy was detected in one patient. These cases are cautionary that GD and its extrathyroidal manifestations may develop in a short period after COVID-19 vaccination. When considered together with the literature review, the history of AITD in approx. half of the patients suggests that more attention should be paid to these patients in the post-vaccination period. Nevertheless, multicenter, prospective studies are needed to better understand this possible causal relationship.

Application In Synthesis of 60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., 60-56-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Wu, Liguo team published research on Pakistan Journal of Pharmaceutical Sciences in 2022 | 60-56-0

60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., Related Products of 60-56-0

Imidazole derivatives generally have good solubility in protic solvents. Simple imidazole derivatives, such as 1H-imidazole, 2-methyl-1H-imidazole, and 1,2-dimethylimidazole, have very high solubility in water. 60-56-0, formula is C4H6N2S, Name is 1-Methyl-1H-imidazole-2(3H)-thione. Their solubility in alcohol is lower than that in water and decreases with increasing molecular weight of the alcohols . Related Products of 60-56-0.

Sun, Lijing;Wu, Liguo;An, Yaqin;Zhang, Minghua;Hou, Bingjie;Liu, Hongmei research published 《 The effects of levothyroxine combined with methimazole on the clinical efficacy of hyperthyroidism treatment》, the research content is summarized as follows. To investigate the effects of levothyroxine combined with methimazole on the clin. efficacy of hyperthyroidism treatment. A total of 102 patients with hyperthyroidism admitted to our hospital from Jan. 2018 to June 2020 were selected and randomly assigned into the combination group (levothyroxine combined with methimazole) and the control group (methimazole treatment alone). 3 mo after treatment, the two groups were compared with regard to clin. efficacy, changes in ultrasound findings, the thyroid hormones, and serum indexes and the adverse reactions rate. The combination group (98.04%) outperformed the control group (86.27%) in total effective rate, and the overall efficacy garnered the similar result. After treatment, the combination group showed advantages in thyroid hormone level, serum index level, thyroid volume, superior thyroid artery diameter, and maximum blood flow rate when compared with those of the control group (P<0.05). As for the adverse reactions rate, the combination group was superior to the control group (3.92%vs15.69%) (P<0.05). Levothyroxine combined with methimazole promotes the clin. efficacy of hyperthyroidism treating, reduces thyroid volume and the diameter of superior thyroid artery, enhances the patient’s thyroid function and serum index, with higher safety profile.

60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., Related Products of 60-56-0

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Sun, Lijing team published research on Pakistan journal of pharmaceutical sciences in 2022 | 60-56-0

60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., Category: imidazoles-derivatives

Imidazole derivatives generally have good solubility in protic solvents. Simple imidazole derivatives, such as 1H-imidazole, 2-methyl-1H-imidazole, and 1,2-dimethylimidazole, have very high solubility in water. 60-56-0, formula is C4H6N2S, Name is 1-Methyl-1H-imidazole-2(3H)-thione. Their solubility in alcohol is lower than that in water and decreases with increasing molecular weight of the alcohols . Category: imidazoles-derivatives.

Sun, Lijing;Wu, Liguo;An, Yaqin;Zhang, Minghua;Hou, Bingjie;Liu, Hongmei research published 《 The effects of levothyroxine combined with methimazole on the clinical efficacy of hyperthyroidism treatment.》, the research content is summarized as follows. To investigate the effects of levothyroxine combined with methimazole on the clinical efficacy of hyperthyroidism treatment. A total of 102 patients with hyperthyroidism admitted to our hospital from January 2018 to June 2020 were selected and randomly assigned into the combination group (levothyroxine combined with methimazole) and the control group (methimazole treatment alone). 3 months after treatment, the two groups were compared with regard to clinical efficacy, changes in ultrasound findings, the thyroid hormones, and serum indexes and the adverse reactions rate. The combination group (98.04%) outperformed the control group (86.27%) in total effective rate, and the overall efficacy garnered the similar result. After treatment, the combination group showed advantages in thyroid hormone level, serum index level, thyroid volume, superior thyroid artery diameter, and maximum blood flow rate when compared with those of the control group (P<0.05). As for the adverse reactions rate, the combination group was superior to the control group (3.92%vs15.69%) (P<0.05). Levothyroxine combined with methimazole promotes the clinical efficacy of hyperthyroidism treating, reduces thyroid volume and the diameter of superior thyroid artery, enhances the patient’s thyroid function and serum index, with higher safety profile.

60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., Category: imidazoles-derivatives

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Abdallah el hadj, A. team published research on Fluid Phase Equilibria in 2022 | 60-56-0

Recommanded Product: 1-Methyl-1H-imidazole-2(3H)-thione, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., 60-56-0.

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 60-56-0, formula is C4H6N2S, Name is 1-Methyl-1H-imidazole-2(3H)-thione. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. Recommanded Product: 1-Methyl-1H-imidazole-2(3H)-thione.

Abdallah el hadj, A.;Laidi, M.;Hanini, S. research published 《 AI-PCSAFT approach: New high predictive method for estimating PC-SAFT pure component properties and phase equilibria parameters》, the research content is summarized as follows. In this work, a new approach based on the association of Artificial intelligence method (AI) and PC-SAFT equation of state is applied to conceive a model for estimating the solubility of solid drugs in supercritical carbon dioxide. Neuro-equation of state approach (NES) is the new technique that takes benefit from the advantages of both ANN and PC-SAFT equation of state. The new method decomposes into three main stages, first the optimization of direct ANN for predicting solids-scCO2 phase equilibrium (where 15 binary systems are used), then the ANN inverse is performed to be an alternative to group contribution methods (GCMs) for estimating the pure components and phys. properties (reduce the uncertainty committed in estimating these properties) and enhance the PCSAFT equation of state to estimate phase equilibrium parameters and finally, ANN-PCSAFT approach is used to estimate the solubility of 213 solid solutes in supercritical carbon dioxide. The performance strategy has been carried out using a linear regression anal. of the predicted vs. exptl. outputs, as an indication of the predictive ability of the developed method. The new approach is successfully applied to the phase equilibrium modeling for 213 binary systems with high accuracy (the comparison in terms of average absolute relative deviation (AARD %) showed a variation from 2 to 6%) and allowed to enhance the phase equilibrium modeling by reducing the number of optimized parameters and surpass the main drawbacks faced in this area mainly the non-availability of phys. properties and EOS pure component properties and the limitation of the equation of state.

Recommanded Product: 1-Methyl-1H-imidazole-2(3H)-thione, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., 60-56-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Abera, Bisrat Tesfay team published research on BMC Endocrine Disorders in 2021 | 60-56-0

SDS of cas: 60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., 60-56-0.

Imidazole is a heterocyclic compound with a five-membered planar ring. It is amphoteric and highly polar. 60-56-0, formula is C4H6N2S, Name is 1-Methyl-1H-imidazole-2(3H)-thione. The pharmacophore of imidazole exists in bioactive compounds including amino acids, plant growth regulators and therapeutic agents. SDS of cas: 60-56-0.

Abera, Bisrat Tesfay;Abera, Merhawit Atsbha;Berhe, Gebretsadik;Abreha, Girmatsion Fisseha;Gebru, Hirut Teame;Abraha, Hiluf Ebuy;Ebrahim, Mohamedawel Mohamedniguss research published 《 Thyrotoxicosis and dilated cardiomyopathy in developing countries》, the research content is summarized as follows. Thyrotoxicosis is the state of thyroid hormone excess. But, in sub-Saharan Africa (SSA), specifically Northern Ethiopia, scientific evidence about thyrotoxicosis and its cardiac complications like dilated cardiomyopathy is limited. Therefore, this study aimed to explore the thyrotoxicosis presentation and management and identify factors associated with dilated cardiomyopathy in a tertiary hospital in Northern Ethiopia. An institution-based cross-sectional study was conducted in Ayder Comprehensive Specialized Hospital from 2017 to 2018. Data from 200 thyrotoxicosis cases were collected using a structured questionnaire. After describing variables, logistic regression was conducted to identify independent predictors of dilated cardiomyopathy. Statistical significance was declared at p < 0.05. Mean age at presentation of thyrotoxicosis was 45 years and females accounted for 89 % of the cases. The most frequent etiol. was multinodular toxic goiter (51.5 %). As well, the most common symptoms and signs were palpitation and goiter resp. Thyroid storm occurred in 6 % of the cases. Out of 89 patients subjected to echocardiog., 35 (39.3 %) of them had dilated cardiomyopathy. And, the odds of dilated cardiomyopathy were higher in patients who had atrial fibrillation (AOR = 15.95, 95 % CI:5.89-38.16, p = 0.001) and tachycardia (AOR = 2.73, 95 % CI:1.04-7.15, p = 0.040). All patients took propylthiouracil and 13.0 % of them experienced its side effects. Concerning β-blockers, propranolol was the most commonly (78.5 % of the cases) used drug followed by atenolol (15.0 %). Six patients underwent surgery. In developing countries like Ethiopia, patients with thyrotoxicosis have no access to methimazole which is the first-line anti-thyroid drug. Besides, they greatly suffer from dilated cardiomyopathy (due to late presentation) and side effects of propylthiouracil. Therefore, we recommend that patients should get adequate health information about thyrotoxicosis and anti-thyroid drugs including their side effects. Addnl., hospitals and other concerned bodies should also avail of TSH tests and methimazole at an affordable cost. Furthermore, community awareness about iodized salt and iodine-rich foods should be enhanced.

SDS of cas: 60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., 60-56-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Agrawal, Medha team published research on Clinical endocrinology in 2022 | 60-56-0

SDS of cas: 60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., 60-56-0.

Imidazole is a five-membered heterocyclic moiety that possesses three carbon, two nitrogen, four hydrogen atoms, and two double bonds. 60-56-0, formula is C4H6N2S, Name is 1-Methyl-1H-imidazole-2(3H)-thione. It is also known as 1, 3-diazole. It contains two nitrogen atoms, in which one nitrogen bear a hydrogen atom, and the other is called pyrrole type nitrogen. SDS of cas: 60-56-0.

Agrawal, Medha;Lewis, Steffan;Premawardhana, Lakdasa;Dayan, Colin M;Taylor, Peter N;Okosieme, Onyebuchi E research published 《 Antithyroid drug therapy in pregnancy and risk of congenital anomalies: Systematic review and meta-analysis.》, the research content is summarized as follows. OBJECTIVES: The risk of congenital anomalies following in utero exposure to thionamide antithyroid drugs (ATDs) is unresolved. Observational studies are contradictory and existing meta-analyses predate and preclude more recent studies. We undertook an updated meta-analysis of congenital anomaly risk in women exposed to carbimazole or methimazole (CMZ/MMI), propylthiouracil (PTU), or untreated hyperthyroidism in pregnancy. METHODS: We searched Medline, Embase, and the Cochrane database for articles published up till August 2021. We pooled separate crude and adjusted risk estimates using random effects models and subgroup analyses to address heterogeneity. RESULTS: We identified 16 cohort studies comprising 5957, 15,785, and 15,666 exposures to CMZ/MMI, PTU, and untreated hyperthyroidism, respectively. Compared to nondisease controls, adjusted risk ratio (RR) and 95% confidence intervals (95% CIs) for congenital anomalies was increased for CMZ/MMI (RR, 1.28; 95% CI, 1.06-1.54) and PTU (RR, 1.16; 95% CI, 1.08-1.25). Crude risk for CMZ/MMI was increased relative to PTU (RR, 1.20; 95% CI, 1.01-1.43). Increased risk was also seen with exposure to both CMZ/MMI and PTU, that is, women who switched ATDs in pregnancy (RR, 1.51; 95% CI, 1.14-1.99). However, the timing of ATD switch was highly variable and included prepregnancy switches in some studies. The excess number of anomalies per 1000 live births was 17.2 for patients exposed to CMZ/MMI, 9.8, for PTU exposure, and 31.4 for exposure to both CMZ/MMI and PTU. Risk in the untreated group did not differ from control or ATD groups. The untreated group was however highly heterogeneous in terms of thyroid status. Subgroup analysis showed more positive associations in studies with >500 exposures and up to 1-year follow-up. CONCLUSIONS: ATD therapy carries a small risk of congenital anomalies which is higher for CMZ/MMI than for PTU and does not appear to be reduced by switching ATDs in pregnancy. Due to key limitations in the available data, further studies will be required to clarify the risks associated with untreated hyperthyroidism and with switching ATDs in pregnancy.

SDS of cas: 60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., 60-56-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

September 28, 2021 News Brief introduction of 60-56-0

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 60-56-0.

60-56-0, Adding some certain compound to certain chemical reactions, such as: 60-56-0, name is 1-Methyl-1H-imidazole-2(3H)-thione, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 60-56-0.

To 10 mL of Acetonitrile were added 3 mmol (1.05 g) of methyl 4-chloro-3-[(E)- dimethylaminomethyleneamino]sulfonyl-5-nitro-benzoate (WO 2012/018635) 3.3 mmol (376 mg) of 2-mercapto-1-methylimidazole and 6.6 mmol (910 mg) of K2C03. The solution was stirred at room temperature overnight. When TLC showed no remaining methyl 4-chloro-3-[(E)- dimethylaminomethyleneamino]sulfonyl-5-nitro-benzoate the reaction mixture was diluted with 10 mL of water and extracted with ethyl acetate. The combined organic layers were washed with brine, dried with Na2S04 and evaporated under reduced pressure. The crude product was then purified by recrystallization from ethanol to yield 1.04 g of yellow crystals (81 % yield). 1H NMR (200 MHz, DMSO-cf6) d 8.66 (d, J = 1.9 Hz, 1 H), d 8.34 (d, J = 1.8 Hz, 2H), d 7.28 (s, 1 H), d 6.87 (s, 1 H), d 3.91 (s, 3H), 3.51 (s, 3H), d 3.10 (s, 3H), d 2.92 (s, 3H). MS m/z: not found

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 60-56-0.

Reference:
Patent; UNIVERSITAeT WIEN; ERKER, Thomas; SCHREPPEL, Philipp; (235 pag.)WO2019/193159; (2019); A1;,
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

S-21 News Sources of common compounds: 60-56-0

The synthetic route of 60-56-0 has been constantly updated, and we look forward to future research findings.

Related Products of 60-56-0,Some common heterocyclic compound, 60-56-0, name is 1-Methyl-1H-imidazole-2(3H)-thione, molecular formula is C4H6N2S, traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

To a solution of 7-[4-(2-butoxyethoxy)phenyl]-N-[4-(hydroxymethyl)phenyl]-1-isobutyl-2,3-dihydro-1-benzazepine-4-carboxamide (500 mg) in THF (10 ml) was added 1 droplet of pyridine, and thionyl chloride (0.09 ml) was added to the mixture at 0C. The mixture was allowed to be at room temperature under nitrogen atmosphere, and stirred for 1 hour. The solvent and excess thionyl chloride were distilled off under reduced pressure, and the residue was dissolved in THF (10 ml). This solution was added to a solution of 2-mercapto-1-methylimidazole (137 mg) and triethylamine (1.67 ml) in THF (10 ml) at 0C, and the mixture was heated overnight under nitrogen atmosphere at 50C. The mixture was allowed to be cooled, water was added to the mixture and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, and dried over magnesium sulfate. The solvent was distilled off under reduced pressure. The obtained residue was separated and purified by silica gel column chromatography (hexane:ethyl acetate = 1:2), to give 7-[4-(2-butoxyethoxy)phenyl]-1-isobutyl-N-[4-[[(1-methylimidazol-2-yl)sulfanyl]methyl]phenyl]-2,3-dihydro-1-benzazepine-4-carboxamide (437 mg) (Compound 358) as yellow amorphous. 1H-NMR (200 MHz, CDCl3) delta 0.90 to 0.99 (9H, m), 1.30 to 1.45 (2H, m), 1.50 to 1.70 (2H, m), 1.95 to 2.20 (1H, m), 2.90 to 2.97 (2H, m), 3.19 (2H, d, J = 7.4 Hz), 3.28 (3H, s), 3.30 to 3.40 (2H, m), 3.55 (2H, t, J = 6.6 Hz), 3.80 (2H, t, J = 4.6 Hz), 4.13 to 4.18 (4H, m), 6.87 to 7.11 (7H, m), 7.37 to 7.56 (8H, m). Elemental Analysis for C38H46N4O3S·0.3H2O Calcd. C, 70.84; H, 7.29; N, 8.70; Found. C, 70.62; H, 7.49; N, 8.91.

The synthetic route of 60-56-0 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Takeda Chemical Industries, Ltd.; EP1422228; (2004); A1;,
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

S News Extracurricular laboratory: Synthetic route of 60-56-0

At the same time, in my other blogs, there are other synthetic methods of this type of compound, 1-Methyl-1H-imidazole-2(3H)-thione, and friends who are interested can also refer to it.

Application of 60-56-0, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 60-56-0 name is 1-Methyl-1H-imidazole-2(3H)-thione, This compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

General procedure: A mixture of 3-chloromethyl-4-methoxybenzaldehyde (2a) (1.85 g, 0.01 mol), the corresponding phenol or thiol (0.011 mol), and potassium carbonate (2.00 g, 0.0145 mol) in a mixture of acetonitrile-DMF (20 mL, from 9 : 1 to 8 : 2, v/v) was refluxed for 5-7 h withstirring (TLC monitoring). After evaporation of the solvents, the residue was treated with water, a precipitate formed was filtered off, washed with 40% aqueous ethanol, and dried in air. Yields and physicochemical characteristics of aldehydes 5a-m and 6a-g are given in Table 2.

At the same time, in my other blogs, there are other synthetic methods of this type of compound, 1-Methyl-1H-imidazole-2(3H)-thione, and friends who are interested can also refer to it.

Reference:
Article; Khachatryan; Razinov; Kolotaev; Belus?; Matevosyan; Russian Chemical Bulletin; vol. 64; 2; (2015); p. 395 – 404; Izv. Akad. Nauk, Ser. Khim.; 2; (2015); p. 395 – 404,10;,
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

9/14/2021 News Introduction of a new synthetic route about 60-56-0

The synthetic route of 60-56-0 has been constantly updated, and we look forward to future research findings.

60-56-0, name is 1-Methyl-1H-imidazole-2(3H)-thione, belongs to imidazoles-derivatives compound, is considered to be a conventional heterocyclic compound, which is widely used in drug synthesis. The chemical synthesis route is as follows. HPLC of Formula: C4H6N2S

Triethylamine (0.0749 g, 0.75 mmol) was added to a solution of2-mercapto-1-methylimidazole (0.0856 g, 0.75 mmol) in tetrahydrofuran(15 mL) and the mixture was stirred for 30 min at roomtemperature. Then, 1-(bromomethyl)pyrene (0.1476 g, 0.5 mmol)was slowly added and the reaction mixture was heated underreflux for 24 h. After cooling to room temperature, the mixture wasfiltered and the solvent was evaporated, the crude residue waspurified by column chromatography (1:1 ethyl acetate/petroleumether) to obtain a brown solid of compound 2 (0.1301 g, 79.3%yield). Characterization of compound 2: 1H NMR600 MHzd6-DMSO3.62 (s, 3H), 3.87 (d, 2H), 7.12 (s, 1H), 7.45 (s, 1H), 7.63(dd, 2H), 8.15 (m, 1H), 8.28 (d, 1H), 8.32 (m, 2H), 8.36 (m, 2H), 8.38(d, 1H), 8.50 (d, lH). Mass spectra (Fig. S2): calculated for C21H16N2S[M+H]+, 329.1; found, 328.81.

The synthetic route of 60-56-0 has been constantly updated, and we look forward to future research findings.

Reference:
Article; Wang, Jing; Jiang, Huihui; Liu, Hai-Bo; Liang, Lebao; Tao, Junrong; Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; vol. 228; (2020);,
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem