Trouve, Jonathan team published research in Angewandte Chemie, International Edition in 2021 | 1739-84-0

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Application of C5H8N2

Imidazole is a five-membered heterocyclic moiety that possesses three carbon, two nitrogen, four hydrogen atoms, and two double bonds. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. It is also known as 1, 3-diazole. It contains two nitrogen atoms, in which one nitrogen bear a hydrogen atom, and the other is called pyrrole type nitrogen. Application of C5H8N2.

Trouve, Jonathan;Zardi, Paolo;Al-Shehimy, Shaymaa;Roisnel, Thierry;Gramage-Doria, Rafael research published 《 Enzyme-like Supramolecular Iridium Catalysis Enabling C-H Bond Borylation of Pyridines with meta-Selectivity》, the research content is summarized as follows. The use of secondary interactions between substrates and catalysts is a promising strategy to discover selective transition metal catalysts for atom-economy C-H bond functionalization. The most powerful catalysts are found via trial-and-error screening due to the low association constants between the substrate and the catalyst in which small stereo-electronic modifications within them can lead to very different reactivities. To circumvent these limitations and to increase the level of reactivity prediction in these important reactions, the authors report herein a supramol. catalyst harnessing Zn···N interactions that binds to pyridine-like substrates as tight as it can be found in some enzymes. The distance and spatial geometry between the active site and the substrate binding site is ideal to target unprecedented meta-selective iridium-catalyzed C-H bond borylations with enzymic Michaelis-Menten kinetics, besides unique substrate selectivity and dormant reactivity patterns.

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Application of C5H8N2

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Sharp, Jacqueline R. team published research in ACS Earth and Space Chemistry in 2021 | 10111-08-7

10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., Application of C4H4N2O

Imidazole derivatives generally have good solubility in protic solvents. Simple imidazole derivatives, such as 1H-imidazole, 2-methyl-1H-imidazole, and 1,2-dimethylimidazole, have very high solubility in water. 10111-08-7, formula is C4H4N2O, Name is 1H-Imidazole-2-carbaldehyde. Their solubility in alcohol is lower than that in water and decreases with increasing molecular weight of the alcohols . Application of C4H4N2O.

Sharp, Jacqueline R.;Grace, Daisy N.;Ma, Shiqing;Woo, Joseph L.;Galloway, Melissa M. research published 《 Competing Photochemical Effects in Aqueous Carbonyl/Ammonium Brown Carbon Systems》, the research content is summarized as follows. Carbonyl-containing volatile organic compounds (CVOCs) have been identified in a variety of atmospherically relevant aqueous aerosol conditions and can contribute significantly to total secondary organic aerosol mass. While dark chem. has been extensively studied for several CVOC-containing reaction systems, the chem. of these same compounds under irradiated conditions is not as well understood. We present time-resolved UV-visible measurements and inferred kinetic rate constants for CVOC/ammonium sulfate (AS) aerosol mimic solutions exposed to direct, broadband radiation for periods of up to 24 h. Glycolaldehyde/AS solutions were observed to monotonically decrease in chromophoricity over irradiated periods. Glyoxal/AS solutions demonstrated a rise and subsequent fall in absorbance while irradiated. Methylglyoxal/AS and hydroxyacetone/AS solutions demonstrated multiple increases and decreases in chromophoricity at different peak locations. The chem. speciation of these CVOC/AS mixtures show that higher mol.-weight oligomer compounds are not photostable; their disappearance is accompanied by the formation of both larger and smaller photochem. products, which can form under a variety of time scales within the same reaction system. The observation of photochem. driven browning phenomena in addition to photobleaching implies that more nuanced approaches are necessary to accurately capture aqueous aerosol chem. under daytime conditions.

10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., Application of C4H4N2O

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Shen, Shuiyun team published research in Journal of Power Sources in 2021 | 1739-84-0

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Computed Properties of 1739-84-0

Imidazole is a heterocyclic compound with a five-membered planar ring. It is amphoteric and highly polar. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. The pharmacophore of imidazole exists in bioactive compounds including amino acids, plant growth regulators and therapeutic agents. Computed Properties of 1739-84-0.

Shen, Shuiyun;Chen, Junren;Yan, Xiaohui;Cheng, Xiaojing;Zhao, Lutian;Ren, Ziwen;Li, Lin;Zhang, Junliang research published 《 Insights into properties of non-precious metal catalyst (NPMC)-based catalyst layer for proton exchange membrane fuel cells》, the research content is summarized as follows. Non-precious metal catalysts (NPMCs) are regarded as the ultimate alternative to high-cost Pt-based catalysts for oxygen reduction reaction in proton exchange membrane fuel cells (PEMFCs). Indeed, great progresses have been made in the rotating disk electrode (RDE) performance of NPMCs, while their corresponding fuel cell performance remains far from satisfying real demands due to the fact that the properties of NPMC-based electrode need to be clarified and optimized. In this work, a series of properties including the oxygen reduction activities, catalyst layer proton conduction resistance and oxygen transport resistance are investigated on membrane electrode assemblies (MEAs) fabricated from home-made Fe-N-C catalysts. It is found that both the oxygen reduction activities and catalyst layer proton conduction increase with the catalyst loading. Unexpectedly, the total oxygen transport resistance is quite large for the MEA with a lower catalyst loading, and the resistance first decreases and then enlarges with the increase in catalyst loading, resulting from a comprehensive effect between local transport and bulk transport. This provides a novel meaningful guide that compared to using Pt-based MEA technique directly, special and deliberate designs are needed for MEAs based on NPMCs to balance the cathode catalyst layer (CCL) activity, proton resistance and oxygen transport resistance simultaneously.

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Computed Properties of 1739-84-0

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Shi, Yingying team published research in Nanoscale in 2022 | 1739-84-0

Application In Synthesis of 1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. Application In Synthesis of 1739-84-0.

Shi, Yingying;Xu, Qiuchen;Tian, Zhangmin;Liu, Guiying;Ma, Chenxu;Zheng, Wenjun research published 《 Ionic liquid-hydroxide-mediated low-temperature synthesis of high-entropy perovskite oxide nanoparticles》, the research content is summarized as follows. High-entropy perovskite oxides (HEPOs) are attracting significant attention due to their unique structures, unprecedented properties and great application potential in many fields, while available synthetic methods have many shortcomings; so it is still a challenge to develop a simple, low-cost and environment-friendly synthetic strategy for HEPOs. Herein, a novel synthetic strategy is reported for HEPOs using an ionic liquid (IL)-hydroxide-mediated technique at a low temperature and normal atm. pressure. The synthesized HEPOs, including Ba(FeNbTiZrTa)O3, Ba(MnNbTiZrTa)O3, Ba(FeSnTiZrTa)O3 and Ba(FeVTiZrTa)O3, exhibit a cubic structure and a dispersed nanoparticle morphol. (particle size of 20-60 nm). The formation process of HEPOs in an IL-KOH system can be described as follows: first, B-site metal source compounds are dissolved in IL-KOH medium to form hydroxyl complexes; second, the complexes further dehydrate, condensate and react with Ba2+ ions to form the crystal nuclei of HEPOs under the synergistic effect of reaction temperature and basicity; third, the growth of HEPO nuclei is completed by the Ostwald ripening process. In these processes, KOH not only plays a role as a solvent, but also provides sufficient OH- concentration for the formation and condensation of B-site metal hydroxyl complexes, while the IL also makes significant contributions: first, a lower reaction temperature and lower dosage of KOH are achieved by the use of the IL; second, the IL with good dissolving ability and low surface tensions can promote the nucleation rate of HEPOs and improve the Ostwald ripening process; third, the compact adsorption of the IL on the surface of products ensures a small particle size and high dispersion of HEPO nanoparticles to a certain extent. In brief, the technique provides an innovative, low-cost, simple and nontoxic strategy for the synthesis of HEPOs, which can be extended to other high-entropy materials.

Application In Synthesis of 1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Shi, Yunlei team published research in ACS Applied Materials & Interfaces in 2020 | 10111-08-7

10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., Recommanded Product: 1H-Imidazole-2-carbaldehyde

Imidazole is a five-membered heterocyclic moiety that possesses three carbon, two nitrogen, four hydrogen atoms, and two double bonds. 10111-08-7, formula is C4H4N2O, Name is 1H-Imidazole-2-carbaldehyde. It is also known as 1, 3-diazole. It contains two nitrogen atoms, in which one nitrogen bear a hydrogen atom, and the other is called pyrrole type nitrogen. Recommanded Product: 1H-Imidazole-2-carbaldehyde.

Shi, Yunlei;Xiong, Dazhen;Li, Zhiyong;Wang, Huiyong;Qiu, Jikuan;Zhang, Hucheng;Wang, Jianji research published 《 Ambient CO2/N2 Switchable Pickering Emulsion Emulsified by TETA-Functionalized Metal-Organic Frameworks》, the research content is summarized as follows. In recent years, metal-organic frameworks (MOFs) have been explored as emulsifiers for the fabrication of Pickering emulsions and then used for hybrid material synthesis and interface catalysis. Nevertheless, stimuli-responsive Pickering emulsions stabilized by MOFs have been rarely reported so far, although they are of great importance for fundamental research studies and practical applications. Herein, for the first time, triethylenetetramine (TETA)-functionalized MOFs (ZIF-90/TETA) have been designed, synthesized, and used for fabricating CO2-/N2-response Pickering emulsions. It is shown that even at the ZIF-90/TETA content of 0.25 wt %, the functional MOF can still efficiently emulsify n-hexane and water to form a high internal phase Pickering emulsion. Importantly, the Pickering emulsion can be easily and reversibly switched between emulsification and demulsification by bubbling of CO2 and N2 alternatively at atm. pressure. The possible mechanism of the CO2/N2 switchable emulsion is investigated by zeta potential, water contact angle, interfacial tension, 13C NMR spectroscopy, and an optical microscope. It is found that the acid-base reaction of CO2 with TETA anchored on the surface of ZIF-90 leads to the production of hydrophilic ammonium bicarbonate and carbamate, which results in the emulsification of the Pickering emulsion. However, when N2 is bubbled to remove CO2, the reverse reaction takes place to cause the demulsification of the Pickering emulsion. Moreover, the CO2/N2 switchable Pickering emulsion has been successfully used as a microreactor for Knoevenagel reactions to demonstrate a highly efficient integration of chem. reaction, product separation, and ZIF-90/TETA recycling for a sustainable chem. process.

10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., Recommanded Product: 1H-Imidazole-2-carbaldehyde

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Siegel, David J. team published research in New Journal of Chemistry in 2021 | 1739-84-0

Reference of 1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. Reference of 1739-84-0.

Siegel, David J.;Anderson, Grace I.;Cyr, Noah;Lambrecht, Daniel S.;Zeller, Matthias;Hillesheim, Patrick C.;Mirjafari, Arsalan research published 《 Molecular design principles of ionic liquids with a sulfonyl fluoride moiety》, the research content is summarized as follows. The continued success of ionic liquids in applications ranging from energy to medicine poses the challenge to rapidly find new functional ionic liquids with desirable properties while developing practical, scalable syntheses. As a SuFExable functionality, the sulfonyl fluoride has become widely adopted throughout the field of chem. biol. due, in part, to its unique stability-reactivity pattern, highlighting the underappreciated potential of the SVI-F motif in materials chem. For the first time, we herein report the development of a set of sulfonyl fluoride-functionalized ionic liquids with considerable structural diversity via an efficient, modular, and orthogonal fluorosulfonylethylation procedure. The resulting SO2F-functionalized ionic milieu has properties consistent with its classification as ionic liquids We employed a combination of mol. design, synthesis, computational modeling, and X-ray crystallog. studies to gain in-depth understanding of their structure-property correlations. The diversification of the SO2F-bearing salts is extended to include active pharmaceutical precursors, allowing for access to functional materials with a priori low toxicity.

Reference of 1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Sigalov, Mark V. team published research in Tetrahedron in 2021 | 10111-08-7

COA of Formula: C4H4N2O, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., 10111-08-7.

Imidazole based anticancer drug find applications in cancer chemotherapy. 10111-08-7, formula is C4H4N2O, Name is 1H-Imidazole-2-carbaldehyde. It is used as buffer component for purification of the histidine tagged recombinant proteins in immobilized metal-affinity chromatography (IMAC). COA of Formula: C4H4N2O.

Sigalov, Mark V.;Shainyan, Bagrat A.;Chipanina, Nina N.;Oznobikhina, Larisa P.;Sterkhova, Irina V. research published 《 Photoisomerization and hydrogen-bonding-induced association in 2-(1H-diazol-2-ylmethylene)indane-1-ones and 2-(1H-diazol-2-ylmethylene)-1H-indene-1,3(2H)-diones.》, the research content is summarized as follows. The products of condensation of 2-imidazolyl-, 4-imidazolyl-, 3-pyrazolylcarbaldehydes with indan-1-one 1-3 and 1H-indene-1,3(2H)-dione 4-6 were synthesized. The E-isomers of 1-3 undergo UV-induced isomerization to the Z-isomers stabilized by intramol. NH···O=C hydrogen bond with the pyrrolic-type NH group. Theor. anal. of all isomers, tautomers and rotamers showed that the degree of conjugation between the diazolyl group and the C=O group decreases in the order 1 > 2>3. Spectroscopic study of 1-6 performed before and after UV irradiation allowed to conclude on the nature of the associates formed. A remarkably different association of the 2- and 4-imidazolyl derivatives 4 and 5 was revealed by X-ray and confirmed theor., leading to the formation of the chelate rings closed by NH···O=C hydrogen bond in 4 or by N-H …Npyridinic hydrogen bond in 5. Both chelate rings include two bifurcate H-bonds with bifurcation on the carbonyl oxygen and the pyrrolic NH hydrogen.

COA of Formula: C4H4N2O, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., 10111-08-7.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Sigalov, Mark V. team published research in Tetrahedron in 2021 | 3034-50-2

Recommanded Product: Imidazole-4-carbaldehyde, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Imidazole based anticancer drug find applications in cancer chemotherapy. 3034-50-2, formula is C4H4N2O, Name is Imidazole-4-carbaldehyde. It is used as buffer component for purification of the histidine tagged recombinant proteins in immobilized metal-affinity chromatography (IMAC). Recommanded Product: Imidazole-4-carbaldehyde.

Sigalov, Mark V.;Shainyan, Bagrat A.;Chipanina, Nina N.;Oznobikhina, Larisa P.;Sterkhova, Irina V. research published 《 Photoisomerization and hydrogen-bonding-induced association in 2-(1H-diazol-2-ylmethylene)indane-1-ones and 2-(1H-diazol-2-ylmethylene)-1H-indene-1,3(2H)-diones.》, the research content is summarized as follows. The products of condensation of 2-imidazolyl-, 4-imidazolyl-, 3-pyrazolylcarbaldehydes with indan-1-one 1-3 and 1H-indene-1,3(2H)-dione 4-6 were synthesized. The E-isomers of 1-3 undergo UV-induced isomerization to the Z-isomers stabilized by intramol. NH···O=C hydrogen bond with the pyrrolic-type NH group. Theor. anal. of all isomers, tautomers and rotamers showed that the degree of conjugation between the diazolyl group and the C=O group decreases in the order 1 > 2>3. Spectroscopic study of 1-6 performed before and after UV irradiation allowed to conclude on the nature of the associates formed. A remarkably different association of the 2- and 4-imidazolyl derivatives 4 and 5 was revealed by X-ray and confirmed theor., leading to the formation of the chelate rings closed by NH···O=C hydrogen bond in 4 or by N-H …Npyridinic hydrogen bond in 5. Both chelate rings include two bifurcate H-bonds with bifurcation on the carbonyl oxygen and the pyrrolic NH hydrogen.

Recommanded Product: Imidazole-4-carbaldehyde, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Singh, Anoop team published research in RSC Advances in 2022 | 3034-50-2

3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, Reference of 3034-50-2

Imidazole based anticancer drug find applications in cancer chemotherapy. 3034-50-2, formula is C4H4N2O, Name is Imidazole-4-carbaldehyde. It is used as buffer component for purification of the histidine tagged recombinant proteins in immobilized metal-affinity chromatography (IMAC). Reference of 3034-50-2.

Singh, Anoop;Saini, Sanjeev;Singh, Narinder;Kaur, Navneet;Jang, Doo Ok research published 《 Cellulose-reinforced poly(ethylene-co-vinyl acetate)-supported Ag nanoparticles with excellent catalytic properties: synthesis of thioamides using the Willgerodt-Kindler reaction》, the research content is summarized as follows. Cellulose, a bio-derived polymer, is widely used in food packaging, dye removal, coatings, and solid-supported catalysis. Heterogeneous catalysts play a critical role in environmental remediation. In this context, the demand for green and cost-effective catalysts has rapidly increased. In this study, cellulose was extracted from rice straw, and a highly active solid-supported catalytic model was developed. First, cellulose was conjugated with poly(ethylene-co-vinyl acetate) (PEVA), and then Ag nanoparticles (AgNPs) were inserted into the cellulose-PEVA composite. The process involved the reduction of AgNPs in the presence of sodium borohydride. The fabricated hybrid catalyst was characterized using Fourier-transform IR spectroscopy, SEM, energy dispersive X-ray, and powder X-ray diffraction. Thereafter, the obtained hybrid was used as a catalyst for the Willgerodt-Kindler reaction of aromatic aldehydes, amines, and S8 to synthesize thioamides with excellent yields. The developed catalytic system exhibited high stability and recyclability. Moreover, the mech. properties of the hybrid catalyst were evaluated using tensile strength and impact tests. RGB anal. of digital images was also performed to investigate the primary components of the catalyst.

3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, Reference of 3034-50-2

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Singh, Ekta team published research in International Journal of Pharmacy and Pharmaceutical Research in 2021 | 10111-08-7

10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., Related Products of 10111-08-7

Imidazole Biochem/physiol Actions: Imidazole derivatives have antibacterial, antifungal and anticancer functionality. It interacts with DNA and also binds to protein and stops cell division. 10111-08-7, formula is C4H4N2O, Name is 1H-Imidazole-2-carbaldehyde. It also acts as a microtubule destabilizing agents and inhibits topoisomerase and Cytochrome P450 Family 26 Subfamily A Member 1 (CYP26A1) enzymes. Related Products of 10111-08-7.

Singh, Ekta;Matada, Gurubasavaraja Swamy Purawarga research published 《 Chemical features responsible for the antioxidant property in 7-azaindoles and related compounds》, the research content is summarized as follows. The pro-oxidant mols. are reactive towards the cell organelles due to instability in their electronic composition Thus, pro-oxidants interact with and cause damages to cell organelles. This damage can be prevented by antioxidant mols. as they neutralize the pro-oxidants and render them harmless. The ability of mols. to act as an antioxidant is exhibited by its chem. feature. Alpha tocopherol and its analogs are well established antioxidants. The antioxidants can be designed based on the structure of alpha tocopherol. Some research articles have compared the antioxidant properties of alpha tocopherol and small mols. with different heterocylic rings. In continuation to the development of small antioxidant mols. azaindole analogs have also been compared with alpha tocopherol. Azaindoles are a novel class of compounds that can be developed as antioxidant mols. based on their similarity with heterocyclic rings present in reported antioxidants. In the current research we have studied some azaindole related compounds and their antioxidant properties. The objective of this study is to study some 7-azaindole related compounds as antioxidants. In this research work, small substituted azaindoles and related structures have been studied for their antioxidant properties by DPPH assay method. The structure with Ketone and double bond functional group show antioxidant property in DPPHA assay. The presence of chlorine on aromatic ring increases the antioxidant property of azaindoles. Azaindole scaffold can be used to design and develop novel antioxidant mols.

10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., Related Products of 10111-08-7

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem