Grabrijan, Katarina team published research on International Journal of Molecular Sciences in 2022 | 3034-50-2

Synthetic Route of 3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Imidazole based anticancer drug find applications in cancer chemotherapy. 3034-50-2, formula is C4H4N2O, Name is Imidazole-4-carbaldehyde. It is used as buffer component for purification of the histidine tagged recombinant proteins in immobilized metal-affinity chromatography (IMAC). Synthetic Route of 3034-50-2.

Grabrijan, Katarina;Strasek, Nika;Gobec, Stanislav research published 《 Synthesis of 3-Amino-4-substituted Monocyclic β-Lactams-Important Structural Motifs in Medicinal Chemistry》, the research content is summarized as follows. Monocyclic β-lactams (azetidin-2-ones) exhibit a wide range of biol. activities, the most important of which are antibacterial, anticancer, and cholesterol absorption inhibitory activities. The synthesis of decorated monocyclic β-lactams is challenging because their ring is highly constrained and consequently reactive, which is also an important determinant of their biol. activity. Authors present the optimized synthesis of orthogonally protected 3-amino-4-substituted monocyclic beta-lactams. Among several possible synthetic approaches, Staudinger cycloaddition proved to be the most promising method for initial ring formation, yielding monocyclic β-lactams with different substituents at the C-4 position, a phthalimido-protected 3-amino group, and a (dimethoxy)benzyl protected ring nitrogen. Challenging deprotection methods were then investigated. Oxidative cleavage with cerium ammonium nitrate and ammonia-free Birch reduction was found to be most effective for selective removal of ring nitrogen protection. Hydrazine hydrate was used for deprotection of the phthalimido group, and the procedure had to be modified by the addition of HCl in the case of aromatic substituents at the C-4 position. The presented methods and the synthesized 3-amino-4-substituted monocyclic β-lactam derivatives are an important step toward new β-lactams with potential pharmacol. activities.

Synthetic Route of 3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Guo, Fei team published research on Separation and Purification Technology in 2022 | 10111-08-7

10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., Recommanded Product: 1H-Imidazole-2-carbaldehyde

Imidazole derivatives generally have good solubility in protic solvents. Simple imidazole derivatives, such as 1H-imidazole, 2-methyl-1H-imidazole, and 1,2-dimethylimidazole, have very high solubility in water. 10111-08-7, formula is C4H4N2O, Name is 1H-Imidazole-2-carbaldehyde. Their solubility in alcohol is lower than that in water and decreases with increasing molecular weight of the alcohols . Recommanded Product: 1H-Imidazole-2-carbaldehyde.

Guo, Fei;Li, Dongsheng;Ding, Rui;Gao, Jiaming;Ruan, Xuehua;Jiang, Xiaobin;He, Gaohong;Xiao, Wu research published 《 Constructing MOF-doped two-dimensional composite material ZIF-90@C3N4 mixed matrix membranes for CO2/N2 separation》, the research content is summarized as follows. Two-dimensional nanomaterials have the characteristics of high aspect ratio and high space utilization, which has huge potential advantages in gas separation In this work, g-C3N4 two-dimensional nanosheets with sieving pore structure were selected as templates and combined with ZIF-90 to construct a 0-dimensional/2-dimensional composite material ZIF-90@C3N4 (ZCN). The complete two-dimensional g-C3N4 nanosheets were stripped under acid etching conditions at 25°. ZIF-90 was distributed in an orderly manner on the two-dimensional nanosheets and the nanosheets were spread out due to the growth of ZIF-90 to provide more free volume The gas permeation experiment proved that the ZCN has a better CO2/N2 separation performance. The ZCN/Pebax mixed matrix membrane (MMM) with the optimized 8.0 wt% ZCN loading showed an improved CO2 permeability of 110.5 Barrer and a CO2 /N2 selectivity of 84.4, surpassing the Robeson upper bound (2008). The results demonstrated that the designed composite filler with 2D nanosheets is an effective strategy to enhance gas separation performance of MMMs and verified the application potential in gas purification industry.

10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., Recommanded Product: 1H-Imidazole-2-carbaldehyde

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Guo, Shen team published research on Journal of Solid State Chemistry in 2022 | 10111-08-7

10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., Safety of 1H-Imidazole-2-carbaldehyde

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 10111-08-7, formula is C4H4N2O, Name is 1H-Imidazole-2-carbaldehyde. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. Safety of 1H-Imidazole-2-carbaldehyde.

Guo, Shen;Zhang, Shu-Hua;Wang, Fei;Zhang, Jian research published 《 Syntheses of tetrahedral imidazolate frameworks with auxiliary ligand in DMSO》, the research content is summarized as follows. In the authors’ former work, the authors developed one kind of new tetrahedral imidazolate frameworks (TIF-Ax) by adding auxiliary unineg. linker into the zinc-imidazolate assembly in amide. Herein, (TIF-A4 to TIF-A8) were obtained from imidazolate derivatives and Zinc acetate (acetate as auxiliary ligands) in DMSO. Among them, Zn centers were coordinated by imidazolate derivatives to form 1-dimensional chain, differently, TIF-A4 exhibited 3-dimensional framework with dia topol. and TIF-A5 to TIF-A8 were 4-connected layer with sql topol. These results suggested that DMSO was a good solvent for the syntheses of new TIF-Ax. These compounds were characterized by single crystal XRD, powder XRD, FTIR and TG. The fluorescence of them were also tested.

10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., Safety of 1H-Imidazole-2-carbaldehyde

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Guo, Shuai team published research on Journal of Environmental Chemical Engineering in 2022 | 1739-84-0

Product Details of C5H8N2, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Imidazole based anticancer drug find applications in cancer chemotherapy. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. It is used as buffer component for purification of the histidine tagged recombinant proteins in immobilized metal-affinity chromatography (IMAC). Product Details of C5H8N2.

Guo, Shuai;Liu, Lidong;Guo, Xin;Liu, Tiecheng;Li, Xingcan;Li, Guangyu research published 《 Unveiling the mechanism of NOx precursor formation during sewage sludge pyrolysis: Effects of carbohydrate-protein interactions》, the research content is summarized as follows. Municipal sewage sludge poses environmental and health risks, and thus, requires proper disposal using pyrolytic techniques. However, these techniques are hindered by the production of NH3 and HCN (NOx precursors) by the sludge. Hence, a comprehensive understanding of NH3 and HCN formation during sludge pyrolysis is required to minimize its NOx footprint. As sludge N mainly occurs in proteins forms, its transformations can be modeled using amino acids. Here, we aimed to the study the mechanism by which carbohydrates influence the formation of NOx precursors during sludge protein pyrolysis at different temperatures using glutamic acid, tyrosine, and histidine as protein models and cellulose and lignin as carbohydrate models. During pyrolysis, the release of NH3 and HCN was promoted by high temperatures and inhibited by carbohydrates. Despite this inhibitory effect, the results suggested that the release of NH3 should be considered for samples rich in aliphatic amino acids. For glutamic acid and tyrosine, NOx precursor formation was inhibited by N fixation in coke under the action of volatiles produced during carbohydrate pyrolysis. For glutamic acid, adding cellulose and lignin increased the coke-N content by 25.32% and 44.73% at 700°C. For histidine, this effect was ascribed to the ring-opening reactions induced by the free radical products of carbohydrate decomposition and the enhanced transfer of N-containing compounds to tar after ring-opening recombination. Further, heterocyclic-N within tar increased to 69.12% due to lignin-histidine interactions at 700°C. The results of this study can assist in regulating sludge protein pyrolysis intended for minimizing the production of NOx precursors.

Product Details of C5H8N2, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Haddad, Boumediene team published research on Journal of Molecular Liquids in 2021 | 1739-84-0

Category: imidazoles-derivatives, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. Category: imidazoles-derivatives.

Haddad, Boumediene;Kachroudi, Achraf;Turky, Gamal;Belarbi, El Habib;Lamouri, Abdelkader;Villemin, Didier;Rahmouni, Mustapha;Sylvestre, Alain research published 《 The interplay between molecular structure and dielectric propertiesin ionic liquids: A comparative study》, the research content is summarized as follows. In this work, C2-Methylated [C3DMIM+][I] vs. C2-Protonated [C3MIM+][I] Imidazolium-Based Ionic Liquids containing iodide anion, have been synthesized and characterized using 1H and 13C NMR spectroscopy methods. In order to investigate the methylation effect on thermal properties, we rely to three addnl. thermal anal. techniques. The thermal behavior confirmed that the methylated [C3DMIM+][I] IL is more stable than the protonated one [C3MIM+][I]. The conductivity and dielec. relaxation properties of both ILs have been investigated in the frequency range [10-2, 107 Hz] and the temperature ranging between -30°C and 60°C. Dielec. permittivity studies show that the substitution of the hydrogen atom by a Me group has a significant impact in both the real ε’ and imaginary ε” parts. In addition, the anal. of the observed relaxation times for the protonated IL [C3MIM+][I] showed Arrhenius-type temperature dependence for the temperatures ranging between 20°C and 60°C – and VFT temperature dependence for the temperatures ranging between -20°C and 20°C-, while, the methylated IL [C3DMIM +][I] showed Vogel-Fulcher-Tamman-type temperature dependence in the entire investigated temperature range – 30°C to 60°C. The representation of σ” (ν, T) shows the buildup of the electrochem. double layer and interfacial effect. However the real part of complex conductivity follows the empirical Jonscher equation. The determined dc-conductivity of both investigated Ionic liquids present a new behavior regarding the thermal activation an anomalous thermal activation behavior. It follows an Arrhenius relation at lower temperatures and then reach a steady state values at higher temperatures

Category: imidazoles-derivatives, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Han, Zhaoyu team published research on ChemNanoMat in 2021 | 10111-08-7

SDS of cas: 10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., 10111-08-7.

Imidazole Biochem/physiol Actions: Imidazole derivatives have antibacterial, antifungal and anticancer functionality. It interacts with DNA and also binds to protein and stops cell division. 10111-08-7, formula is C4H4N2O, Name is 1H-Imidazole-2-carbaldehyde. It also acts as a microtubule destabilizing agents and inhibits topoisomerase and Cytochrome P450 Family 26 Subfamily A Member 1 (CYP26A1) enzymes. SDS of cas: 10111-08-7.

Han, Zhaoyu;Qian, Yue;Wu, Yiyang;Cai, Yanfei;Jin, Jian;Yang, Zhaoqi research published 《 Metal-Organic Frameworks Deliver a Conjugate of Functional Oligonucleotides and Photosensitizer to Induce Apoptosis for Enhancing Chemotherapy》, the research content is summarized as follows. Metal-organic frameworks are highly porous and biodegradable and have found numerous applications in biomedicine. However, the traditional chemotherapy of MOF-drug delivery system remains a great challenge because of adverse side effects and cell tolerance. In this work, we have fabricated a hybrid drug delivery system based on ZIF-90 encapsulated with Doxorubicin (DOX) and Ce6-G3139 for enhanced chemotherapy. The released DOX can enter cell nucleus and trigger cell death. In addition, the G3139 binds to the anti-apoptotic gene Bcl-2 in tumor cells and related proteins are downregulated to inhibit cell proliferation. Meanwhile, the photosensitizer Ce6 carried by the nucleic acid will generate abundant reactive oxygen species under a near-IR (NIR) laser irradiation thus induces more cell apoptosis. It was worth mentioning that in vitro MTT test in the MCF-7 cells assays revealed that DOX@ ZIF-90/Ce6-G3139 nanoparticles possessed stronger anticancer capability than free DOX or DOX@ ZIF-90 nanoparticles indicating that the investigation offers an exciting new therapeutic strategy for the treatment of chemotherapy.

SDS of cas: 10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., 10111-08-7.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Han, Zhentong team published research on ACS Applied Nano Materials in 2022 | 10111-08-7

10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., HPLC of Formula: 10111-08-7

Imidazole based anticancer drug find applications in cancer chemotherapy. 10111-08-7, formula is C4H4N2O, Name is 1H-Imidazole-2-carbaldehyde. It is used as buffer component for purification of the histidine tagged recombinant proteins in immobilized metal-affinity chromatography (IMAC). HPLC of Formula: 10111-08-7.

Han, Zhentong;Zhao, Yaxin;Jiang, Haoji;Sheng, Ao;Li, Hao;Jia, Hao;Yun, Zhiyuan;Wei, Zhong;Wang, Heyun research published 《 (3-Aminopropyl) Triethoxysilane-Modified ZIF-90 Nanoparticle/Polydimethylsiloxane Mixed Matrix Membranes for Ethanol Recovery via Pervaporation》, the research content is summarized as follows. The present study eliminated nonselective defects by amending the MOF-based mixed matrix membrane (MMM) interface with (3-aminopropyl) triethoxysilane (APTES) via Schiff’s base reaction. This modification on the ZIF-90 nanoparticle surfaces enhanced the polydimethylsiloxane (PDMS) matrix interaction in the MMMs. Interfacial defects were then minimized through APTES-ZIF-90 nanoparticle surface alkoxy and PDMS chain hydroxyl group crosslinking. Enhanced chem. interactions between the nanoparticles and the polymeric matrix in the APTES-ZIF-90/PDMS MMMs resulted in higher interface compatibility and separation performance than the ZIF-90 nanoparticle MMMs, which ultimately improved its ethanol affinity and hydrophobicity. When the load of APTES-ZIF-90 nanoparticles was 15% and the temperature was 40°C, the pervaporation performance of APTES-ZIF-90/PDMS MMMs was optimal, the separation factor was 16.8, and the permeation flux was 223 g/(m2·h). Compared with pure PDMS, the separation factor and permeation flux increased by 91 and 67%, resp. In addition, stable APTES-ZIF-90/PDMS MMM pervaporation performance was observed after an optimal operation time of 120 h. Overall, the present work presented methods to optimize MOF-based MMMs for enhanced interface morphol. and separation performance for ethanol recovery.

10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., HPLC of Formula: 10111-08-7

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Hara, Naofumi team published research on Chemical Communications (Cambridge, United Kingdom) in 2021 | 1739-84-0

Synthetic Route of 1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. Synthetic Route of 1739-84-0.

Hara, Naofumi;Uemura, Nao;Nakao, Yoshiaki research published 《 C2-Selective silylation of pyridines by a rhodium-aluminum complex》, the research content is summarized as follows. We have developed a C2-selective dehydrogenative mono-silylation of a variety of pyridines using a Rh-Al complex [(R2PCH2N-1,2-C6H4NMe-1,2-C6H4NCH2PR2)AlClRhCl(L)]n (R = Ph, iPr; n = 1, L = nbd; n = 2, L void). Both the site- and mono-selectivity are controlled via the pyridine coordination to the Lewis-acidic Al center prior to the activation of the pyridine C(2)-H bond at the proximal Rh center. A reaction mechanism is proposed based on several mechanistic studies, including the isolation of a (2-pyridyl)silylrhodium intermediate.

Synthetic Route of 1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Hardy, Matthias team published research on Angewandte Chemie, International Edition in 2021 | 3034-50-2

Related Products of 3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Imidazole is a five-membered heterocyclic moiety that possesses three carbon, two nitrogen, four hydrogen atoms, and two double bonds. 3034-50-2, formula is C4H4N2O, Name is Imidazole-4-carbaldehyde. It is also known as 1, 3-diazole. It contains two nitrogen atoms, in which one nitrogen bear a hydrogen atom, and the other is called pyrrole type nitrogen. Related Products of 3034-50-2.

Hardy, Matthias;Tessarolo, Jacopo;Holstein, Julian J.;Struch, Niklas;Wagner, Norbert;Weisbarth, Ralf;Engeser, Marianne;Beck, Johannes;Horiuchi, Shinnosuke;Clever, Guido H.;Luetzen, Arne research published 《 A Family of Heterobimetallic Cubes Shows Spin-Crossover Behaviour Near Room Temperature》, the research content is summarized as follows. Using 4-(4′-pyridyl)aniline as a simple organic building block in combination with three different aldehyde components together with metal(II) salts gave three different Fe8Pt6-cubes and their corresponding Zn8Pt6 analogs by employing the subcomponent self-assembly approach. Whereas the use of zinc(II) salts gave rise to diamagnetic cages, iron(II) salts yielded metallosupramol. cages that show spin-crossover behavior in solution The spin-transition temperature T1/2 depends on the incorporated aldehyde component, giving a construction kit for the deliberate synthesis of spin-crossover compounds with tailored transition properties. Incorporation of 4-thiazolecarbaldehyde or N-methyl-2-imidazole-carbaldehyde yielded cages that undergo spin-crossover around room temperature whereas the cage obtained using 1H-4-imidazolecarbaldehyde shows a spin-transition at low temperatures Three new structures were characterized by synchrotron x-ray diffraction and all structures were characterized by mass spectrometry, NMR and UV/visible spectroscopy.

Related Products of 3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Hata, Shinichi team published research on Diamond and Related Materials in 2021 | 1739-84-0

Name: 1,2-Dimethyl-1H-imidazole, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Imidazole Biochem/physiol Actions: Imidazole derivatives have antibacterial, antifungal and anticancer functionality. It interacts with DNA and also binds to protein and stops cell division. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. It also acts as a microtubule destabilizing agents and inhibits topoisomerase and Cytochrome P450 Family 26 Subfamily A Member 1 (CYP26A1) enzymes. Name: 1,2-Dimethyl-1H-imidazole.

Hata, Shinichi;Yamaguchi, Yuya;Nakata, Riku;Kametani, Koudai;Du, Yukou;Shiraishi, Yukihide;Toshima, Naoki research published 《 Durable n-type carbon nanotubes double-doped with 1,8-diazabicyclo[5.4.0]undec-7-ene and polyamidoamine dendrimers》, the research content is summarized as follows. Owing to their well-known instability in air, organic n-type semiconductors must be doped to protect them from moisture and oxygen. Such doping is crucial for producing soft flexible devices that can convert large amounts of low-temperature waste heat into elec. energy. Herein, we report the preparation and thermoelec. properties of drop-cast carbon nanotube (CNT) films double-doped with the 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) superbase and electron-donating polyamidoamine dendrimers (PAMAM). Our method not only enhances the chem. stabilities of the electron carriers but also is favorable for large-scale applications. Despite being prepared in aqueous solvents, the p-type CNTs were found to exhibit n-type behavior, irresp. of the pKa of the electron-donating organic mol. In particular, the addition of DBU resulted in the largest thermoelec. conversion output factor (Seebeck coefficient and power factor of -32.2μV K-1 and 261μW m-1 K-2, resp.). The inclusion of PAMAM as a dispersant and secondary dopant significantly prolonged the stability of the n-type behavior of DBU-doped CNTs in air at 80°C from approx. 15 days for an undoped system to more than 30 days. Surprisingly, after 30 days, the thermoelec. conversion power factor of the doped system was found to be approx. 20% higher than that of the undoped system, confirming the excellent performance of hybrid thermoelec. material with a PAMAM shell/DBU-doped CNT core structure. In addition, its n-type doping process does not require organic solvents. These results create new avenues for the development of atmospherically stable drop-cast n-type CNT films.

Name: 1,2-Dimethyl-1H-imidazole, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem